Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First high-resolution images of bone, tooth and shell formation

This is a 3D electron microscopy image of the calcium carbonate crystals that grow to the organic surface. The flat part of the crystals is in contact with the organic layer. (the width of the crystals is approx. 400 nanometers)

Credit: Nico Sommerdijk
This is a 3D electron microscopy image of the calcium carbonate crystals that grow to the organic surface. The flat part of the crystals is in contact with the organic layer. (the width of the crystals is approx. 400 nanometers)

Credit: Nico Sommerdijk

Abstract:
Researchers at Eindhoven University of Technology (TU/e) have for the first time made high-resolution images of the earliest stages of bone formation. They used the world's most advanced electron microscope to make three-dimensional images of the nano-particles that are at the heart of the process. The results provide improved understanding of bone, tooth and shell formation. For industrial applications, they promise better materials and processes based on nature itself. The findings form the cover story of Science magazine's Friday 13 March edition.

First high-resolution images of bone, tooth and shell formation

Netherlands | Posted on March 12th, 2009

Led by dr. Nico Sommerdijk, the researchers imaged small clusters with a cross-section of 0.7 nanometer in a solution of calcium carbonate (the basic material of which shells are made). They showed for the first time that these clusters, each consisting of only about ten ions, are the beginning of the growth process through which the crystalline biomineral is ultimately formed.

To do this they used the very high resolution of a special electron microscope: the cryoTitan (of FEI Company). This enabled them, as the first in their field of research, to make three-dimensional images of very rapidly frozen samples. These showed how the clusters in the solution nucleate into larger, unstructured nano-particles with an average diameter of around thirty nanometers.

An organic surface applied by the researchers ensures that these nano-particles can grow into larger particles, in which crystalline regions can later form by ordering of the ions. The TU/e researchers also demonstrated a second function of the organic layer: it controls with great precision the direction in which the mineral can grow into a fully fledged biomineral. They now hope to show that the mechanism they have identified also applies to the formation of other crystalline biominerals, and perhaps even to other, inorganic materials.

This is important for research into bone growth and bone-replacement materials. In addition it could be used in nanotechnology, to allow the growth of nano-particles to be controlled in the same way as seems to be the case in nature: through subtle interactions between organic and inorganic materials.

About biomineralization

Biomineralization is the formation of inorganic materials in a biological environment, as it is found in bones, teeth and shells. In this process the formation of the mineral is controlled with great precision by specialized organic biomolecules such as sugars and proteins. Although the underlying mechanisms have already been studied for a long time, the process is still not fully understood.

A widely used strategy is the use of so-called biomimetic studies, in which the process of biomineralization is simulated by a simplified system in a laboratory. This allows parts of the mineralization process to be studied individually.

With this approach and by using the unique electron microscope referred to above, Sommerdijk's research group in the Chemical Engineering and Chemistry department at TU/e have been able to image the earliest stages of such a biomimetically controlled mineralization reaction.

Reference: Science, 13 March 2009, "The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM"; Emilie M. Pouget, Paul H.H. Bomans, Jeroen A.C.M. Goos, Peter M. Frederik, Gijsbertus de With and Nico A.J.M. Sommerdijk.

Nico Sommerdijk carried out this work with a Vidi grant from the Netherlands Organisation for Scientific Research (NWO). The cryoTEM equipment was financed partly by an NWO Large Investment Subsidy.

####

For more information, please click here

Contacts:
Nico Sommerdijk

31-651-627-482

Copyright © Eindhoven University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Imaging

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Leti Presents Optical-Equipment Curving Technology that Improves Performance, Cuts Costs: ‘Disruptive Approach’ for Imaging Applications Presented in Paper At Photonics West and Demonstrated in Leti’s Booth February 2nd, 2018

New technology aiming to improve trueness in the piezoelectric microscopy characterization of ceramic materials January 26th, 2018

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Tools

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project