Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New nanoporous material has highest surface area yet

Abstract:
University of Michigan researchers have developed a nanoporous material with a surface area significantly higher than that of any other porous material reported to date.

The work, by a team led by associate professor of chemistry Adam Matzger, is described in a paper published online March 6 in the Journal of the American Chemical Society.

New nanoporous material has highest surface area yet

Ann Arbor, MI | Posted on March 9th, 2009

"Surface area is an important, intrinsic property that can affect the behavior of materials in processes ranging from the activity of catalysts to water detoxification to purification of hydrocarbons," Matzger said.

Until a few years ago, the upper limit for surface area of porous materials was thought to be around 3,000 square meters per gram. Then in 2004, a U-M team that included Matzger reported development of a material known as MOF-177 that set a new record. MOF-177 belonged to a new class of materials known as metal-organic frameworks---scaffold-like structures made up of metal hubs linked together with struts composed of organic compounds. Just one gram of MOF-177 has the surface area of a football field.

"Pushing beyond that point has been difficult," Matzger said, but his group achieved the feat with the new material, UMCM-2 (University of Michigan Crystalline Material-2), which has a record-breaking surface area of more than 5,000 square meters per gram.

The researchers used a technique called coordination copolymerization to produce the new material. Previously, they used the same method to create a similar material, UMCM-1, which was made up of six, microporous cage-like structures surrounding a large, hexagonal channel. By using a slightly different combination of ingredients, Matzger's group came up with UMCM-2, which is composed of fused cages of various sizes and does not have the channel found in UMCM-1.

"The new structure is a bit surprising and shows how the coordination copolymerization method has real potential for new materials discovery," Matzger said.

In the quest for new materials capable of compactly storing large amounts of hydrogen, researchers have assumed that increasing the surface area of porous materials will result in greater storage capacity. Interestingly, the hydrogen-holding ability of UMCM-2, while high, is no greater than that of existing materials in the same family, suggesting that surface area alone is not the key to hydrogen uptake. Even so, UMCM-2 is useful for helping define future research directions, Matzger said. "I think we needed this compound to demonstrate that high surface area alone is not enough for hydrogen storage."

Matzger's coauthors on the paper are postdoctoral researcher Kyoungmoo Koh and research scientist Antek Wong-Foy. The researchers received funding from the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Nancy Ross-Flanigan

734-647-1853

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Adam Matzger

Journal of the American Chemical Society article

Related News Press

News and information

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Discoveries

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Materials/Metamaterials

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Announcements

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Water

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Electricity generated with water, salt and a 3-atoms-thick membrane: EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic