Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum doughnuts slow and freeze light at will

Abstract:
Research led by the University of Warwick has found a way to use doughnut shaped by-products of quantum dots to slow and even freeze light, opening up a wide range of possibilities from reliable and effective light based computing to the possibility of "slow glass".

Quantum doughnuts slow and freeze light at will

UK | Posted on March 8th, 2009

The key to this new research is the "exciton". This describes the pairing of an electron that has been kicked into a higher energy state by a photon, with a hole or gap it (or another electron) leaves within the shell or orbit around the nucleus of an atom. Despite its new high energy state the electron remains paired with one of the holes or positions that has been vacated by electrons moving to a higher energy state. When an electron's high energy state decays again it is drawn back to the hole it is linked to and a photon is once again emitted.

That cycle usually happens very quickly but if one could find a way to freeze or hold an exciton in place for any length of time one could delay the reemitting of a photon and effectively slow or even freeze light.

The researchers, led by PhD researcher Andrea Fischer and Dr. Rudolf A. Roemer from the University of Warwick's Department of Physics, looked at the possibilities presented by some tiny rings of matter accidentally made during the manufacture quantum dots. When creating these very small quantum dots of a few 10-100nm in size physicists some times cause the material to splash when depositing it onto a surface leaving, not a useful dot, but a doughnut shaped ring of material. Though originally created by accident these "Aharonov-Bohm nano rings" are now a source of study in their own right and in this case seemed just the right size for enclosing an exciton. However simply being this useful size does not, in itself, allow them to contain or hold an exciton for any length of time.

However remarkably the Warwick led research team have found that if a combination of magnetic and electric fields is applied to these nano-rings they can actually then simply tune the electric field to freeze an exciton in place or let it collapse and re-emit a photon.

While other researchers have used varying exotic states of matter to dramatically slow the progress of light this is the first time a technique has been devised to completely freeze and release individual photons at will.

Dr Roemer said:

"This has significant implications for the development of light based computing which would require an effective and reliable mechanism such as this to manipulate light. "

The technique could also be used to develop a "buffer" of incoming photons which could re-release them in sequence at a later date thus creating an effect not unlike the concept of "Slow Glass" first suggested by science fiction author Bob Shaw several decades ago.

The new research paper is entitled "Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning" by University of Warwick PhD student Andrea M.Fischer, Dr Rudolf Roemer (University of Warwick) Vivaldo L. Campo Jr. (Universidade Federal de Sao Carlos-UFSCar, Brazil), and Mikhail E. Portnoi (University of Exeter), and has just been published in Physical Review Letters (PRL)

####

For more information, please click here

Contacts:
Dr. Rudolf A. Roemer
Department of Physics
University of Warwick
Tel +44 (0)2476 574328

Peter Dunn
Press and Media Relations Manager
Communications Office
University House
University of Warwick
Coventry, CV4 8UW, United Kingdom

Tel: +44 (0)24 76 523708
Mobile/Cell: +44 (0)7767 655860

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Optical computing/Photonic computing

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

A new trick for controlling emission direction in microlasers June 20th, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

New approach to microlasers: Technique for 'phase locking' arrays of tiny lasers could lead to terahertz security scanners June 17th, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Quantum Dots/Rods

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic