Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum doughnuts slow and freeze light at will

Abstract:
Research led by the University of Warwick has found a way to use doughnut shaped by-products of quantum dots to slow and even freeze light, opening up a wide range of possibilities from reliable and effective light based computing to the possibility of "slow glass".

Quantum doughnuts slow and freeze light at will

UK | Posted on March 8th, 2009

The key to this new research is the "exciton". This describes the pairing of an electron that has been kicked into a higher energy state by a photon, with a hole or gap it (or another electron) leaves within the shell or orbit around the nucleus of an atom. Despite its new high energy state the electron remains paired with one of the holes or positions that has been vacated by electrons moving to a higher energy state. When an electron's high energy state decays again it is drawn back to the hole it is linked to and a photon is once again emitted.

That cycle usually happens very quickly but if one could find a way to freeze or hold an exciton in place for any length of time one could delay the reemitting of a photon and effectively slow or even freeze light.

The researchers, led by PhD researcher Andrea Fischer and Dr. Rudolf A. Roemer from the University of Warwick's Department of Physics, looked at the possibilities presented by some tiny rings of matter accidentally made during the manufacture quantum dots. When creating these very small quantum dots of a few 10-100nm in size physicists some times cause the material to splash when depositing it onto a surface leaving, not a useful dot, but a doughnut shaped ring of material. Though originally created by accident these "Aharonov-Bohm nano rings" are now a source of study in their own right and in this case seemed just the right size for enclosing an exciton. However simply being this useful size does not, in itself, allow them to contain or hold an exciton for any length of time.

However remarkably the Warwick led research team have found that if a combination of magnetic and electric fields is applied to these nano-rings they can actually then simply tune the electric field to freeze an exciton in place or let it collapse and re-emit a photon.

While other researchers have used varying exotic states of matter to dramatically slow the progress of light this is the first time a technique has been devised to completely freeze and release individual photons at will.

Dr Roemer said:

"This has significant implications for the development of light based computing which would require an effective and reliable mechanism such as this to manipulate light. "

The technique could also be used to develop a "buffer" of incoming photons which could re-release them in sequence at a later date thus creating an effect not unlike the concept of "Slow Glass" first suggested by science fiction author Bob Shaw several decades ago.

The new research paper is entitled "Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning" by University of Warwick PhD student Andrea M.Fischer, Dr Rudolf Roemer (University of Warwick) Vivaldo L. Campo Jr. (Universidade Federal de Sao Carlos-UFSCar, Brazil), and Mikhail E. Portnoi (University of Exeter), and has just been published in Physical Review Letters (PRL)

####

For more information, please click here

Contacts:
Dr. Rudolf A. Roemer
Department of Physics
University of Warwick
Tel +44 (0)2476 574328

Peter Dunn
Press and Media Relations Manager
Communications Office
University House
University of Warwick
Coventry, CV4 8UW, United Kingdom

Tel: +44 (0)24 76 523708
Mobile/Cell: +44 (0)7767 655860

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Optical computing/Photonic computing

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

The researchers created a tiny laser using nanoparticles January 5th, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

Discoveries

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Announcements

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Quantum Dots/Rods

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project