Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum doughnuts slow and freeze light at will

Abstract:
Research led by the University of Warwick has found a way to use doughnut shaped by-products of quantum dots to slow and even freeze light, opening up a wide range of possibilities from reliable and effective light based computing to the possibility of "slow glass".

Quantum doughnuts slow and freeze light at will

UK | Posted on March 8th, 2009

The key to this new research is the "exciton". This describes the pairing of an electron that has been kicked into a higher energy state by a photon, with a hole or gap it (or another electron) leaves within the shell or orbit around the nucleus of an atom. Despite its new high energy state the electron remains paired with one of the holes or positions that has been vacated by electrons moving to a higher energy state. When an electron's high energy state decays again it is drawn back to the hole it is linked to and a photon is once again emitted.

That cycle usually happens very quickly but if one could find a way to freeze or hold an exciton in place for any length of time one could delay the reemitting of a photon and effectively slow or even freeze light.

The researchers, led by PhD researcher Andrea Fischer and Dr. Rudolf A. Roemer from the University of Warwick's Department of Physics, looked at the possibilities presented by some tiny rings of matter accidentally made during the manufacture quantum dots. When creating these very small quantum dots of a few 10-100nm in size physicists some times cause the material to splash when depositing it onto a surface leaving, not a useful dot, but a doughnut shaped ring of material. Though originally created by accident these "Aharonov-Bohm nano rings" are now a source of study in their own right and in this case seemed just the right size for enclosing an exciton. However simply being this useful size does not, in itself, allow them to contain or hold an exciton for any length of time.

However remarkably the Warwick led research team have found that if a combination of magnetic and electric fields is applied to these nano-rings they can actually then simply tune the electric field to freeze an exciton in place or let it collapse and re-emit a photon.

While other researchers have used varying exotic states of matter to dramatically slow the progress of light this is the first time a technique has been devised to completely freeze and release individual photons at will.

Dr Roemer said:

"This has significant implications for the development of light based computing which would require an effective and reliable mechanism such as this to manipulate light. "

The technique could also be used to develop a "buffer" of incoming photons which could re-release them in sequence at a later date thus creating an effect not unlike the concept of "Slow Glass" first suggested by science fiction author Bob Shaw several decades ago.

The new research paper is entitled "Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning" by University of Warwick PhD student Andrea M.Fischer, Dr Rudolf Roemer (University of Warwick) Vivaldo L. Campo Jr. (Universidade Federal de Sao Carlos-UFSCar, Brazil), and Mikhail E. Portnoi (University of Exeter), and has just been published in Physical Review Letters (PRL)

####

For more information, please click here

Contacts:
Dr. Rudolf A. Roemer
Department of Physics
University of Warwick
Tel +44 (0)2476 574328

Peter Dunn
Press and Media Relations Manager
Communications Office
University House
University of Warwick
Coventry, CV4 8UW, United Kingdom

Tel: +44 (0)24 76 523708
Mobile/Cell: +44 (0)7767 655860

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Optical computing/ Photonic computing

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Building shape inspires new material discovery March 24th, 2015

Scientists invent new way to control light, critical for next gen of super fast computing March 19th, 2015

New optical materials break digital connectivity barriers: Tel Aviv University researcher discovers novel nanoscale 'metamaterial' could serve as future ultra-high-speed computing units March 19th, 2015

Discoveries

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Announcements

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Quantum Dots/Rods

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Rice fine-tunes quantum dots from coal: Rice University scientists gain control of electronic, fluorescent properties of coal-based graphene March 18th, 2015

Ghent University leads large-scale European training project on quantum dots March 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE