Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A tale of two excitations: A new theory predicts an unusual excitation spectrum for a chain of ultracold gas atoms

Figure 1: The spins on a chain of fermions (top) point in alternating directions, whereas the spins on a chain of bosons (bottom) all point in the same direction. In the latter case, this leads to the emergence of acoustic and spin wave excitations with markedly different spectra. According to the new theory, such differences should be evident in the way a 1-D system of ultracold bosonic atoms absorbs different frequencies of light.
Figure 1: The spins on a chain of fermions (top) point in alternating directions, whereas the spins on a chain of bosons (bottom) all point in the same direction. In the latter case, this leads to the emergence of acoustic and spin wave excitations with markedly different spectra. According to the new theory, such differences should be evident in the way a 1-D system of ultracold bosonic atoms absorbs different frequencies of light.

Abstract:
Theoretical physicists from Argonne National Laboratory, US, and RIKEN's Advanced Science Institute, Wako, have constructed a general theory for describing the characteristics of an unusual and newly discovered system of particles, a chain of ‘spin-1/2 bosons'.

A tale of two excitations: A new theory predicts an unusual excitation spectrum for a chain of ultracold gas atoms

Japan | Posted on March 6th, 2009

Most particles in the Universe are either fermions or bosons. Fermions and bosons may be distinguished by a quantum mechanical property known as spin, which determines a particle's magnetic moment. Fermions, which include electrons and protons, have a spin of 1/2. And bosons, which include photons of light and certain atoms and molecules, always have a spin of 0 or multiples of 1. However, scientists recently discovered that bosons in the form of atoms that have been cooled to a temperature of near absolute zero can behave as if they had a spin of 1/2.

"When certain ultracold bosonic atoms are held in one-dimensional trap, each can be in one of two internal states. These two states can be regarded as up and down components of an effective spin-1/2 particle. Technically, these are referred to as isospin-1/2 bosons, but theoretically there is little difference between spin and isospin," explains RIKEN's Akira Furusaki who, along with Konstantin Matveev from Argonne, built the theory to describe how such particles interact1.

Systems of one-dimensional fermions have been studied for decades because they can be realized experimentally in solid-state systems such as quantum wires and carbon nanotubes. Consequently, their behavior is now well established and described by the so-called Tomonaga-Luttinger theory. Matveev and Furusaki's theory now provides a framework for describing the behavior of a chain of spin-1/2 bosons.

Matveev and Furusaki's theory begins by recognizing that the spins of a chain of bosons prefer to point in the same direction, whereas chains of fermions arrange themselves so that their spins point in alternating directions (Fig. 1). This means that a chain of spin-1/2 bosons can support both acoustic waves―formed by localized fluctuations in the density of particles along a chain―and spin waves―formed by deviations in the orientation of spins along a chain.

The spectra of acoustic waves and spin waves are markedly different, which affects the way in which a chain of ultracold spin-1/2 boson atoms absorbs different frequencies of light. The authors say this provides a relatively straightforward means to test their theory, and gain new insight into the behavior of these and other bosonic systems.
Reference

1. Matveev, K. A. & Furusaki, A. Spectral functions of strongly interacting isospin-1/2 bosons in one dimension. Physical Review Letters 101, 170403 (2008).

The corresponding author for this highlight is based at the RIKEN Condensed Matter Theory Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Physics

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project