Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Student Developer of Versatile “G-gels” Wins $30,000 Lemelson-Rensselaer Prize

Yuehua “Tony” Yu
Yuehua “Tony” Yu

Abstract:
Yuehua "Tony" Yu's innovation could lead to new medical devices, drug delivery technologies

Student Developer of Versatile “G-gels” Wins $30,000 Lemelson-Rensselaer Prize

Troy, NY | Posted on March 4th, 2009

A student at Rensselaer Polytechnic Institute has developed a new method for harnessing the enormous potential of nanoparticles, which could lead to a new generation of medical devices, drug delivery technologies, and other applications.

Yuehua "Tony" Yu, a doctoral student in Rensselaer's Department of Chemistry and Chemical Biology, is the first researcher to create binary guanosine gels, or G-gels, with unique, highly tunable properties. The discovery, which could enable a practical, cost-effective, and scalable method for better exploiting the beneficial properties of many nanoparticles, earned Yu the $30,000 Lemelson-Rensselaer Student Prize.

"Future global challenges will demand leaders who are not only skilled scientists and engineers, but also innovators adept at problem solving and out-of-the-box thinking. The Lemelson-Rensselaer Student Prize recognizes ingenuity and inventiveness, while inspiring students toward excellence," said Rensselaer President Shirley Ann Jackson. "Yuehua Yu is a shining example of this innovative spirit. A keen thinker and passionate researcher, he enjoys a rich understanding of technology, as well as a sharply focused determination to use his abilities for the betterment of all. We celebrate his achievement, and applaud all of the finalists for their dedication and effort. May they, and all of us, continue to foster a healthy scientific curiosity, and an unyielding drive for progress."

Yu is the third recipient of the $30,000 Lemelson-Rensselaer Student Prize. The prize, first given in 2007, is awarded annually to a Rensselaer senior or graduate student who has created or improved a product or process, applied a technology in a new way, redesigned a system or in other ways demonstrated remarkable inventiveness.

For videos and photos of the winner and award finalists, as well as a Webcast of the announcement ceremony, please visit: www.eng.rpi.edu/lemelson.

Helping hand for nanotech
Breakthroughs in nanotechnology hold the promise of touching and revolutionizing medicine, energy production and storage, water purification, electronics, and a host of other diverse fields. A key challenge for many researchers working with nanoparticles is simply getting the nanoscopic materials — some of which measure only a few billionths of a meter in length — where they need to go. Using liquid to disperse nanoparticles seems like a natural fit, but most materials have a tendency to aggregate, or clump together, when placed in liquids. Current solutions for properly dispersing nanomaterials in liquid often impact the materials' properties, cause irreversible damage, or result in concentrations too low to be effective.

To address this problem, Yu investigated guanosine gels, or "G-gels." Yu was the first researcher to develop a G-gel comprised of more than one guanosine compound. He discovered that some of these new binary G-gels were liquid at low temperature, but formed firm gels when heated to room or body temperature. Further study showed that binary G-gels were highly tunable.

This ability to easily convert the G-gels from liquid to gel, and back again, was a natural fit for the reliable delivery of nanoparticles. Yu's G-gels proved to be an inexpensive and scalable means to gently, nondestructively disperse single-walled carbon nanotubes (SWNTs) and other nanoparticles at a high concentration. By simply controlling the temperature, Yu engineered G-gels that can selectively solubilize specific SWNTs, and then be easily removed from the site after the SWNTs are in place. The gels can be tuned to selectively solubilize SWNTs based on different properties, including conductivity and structure.

Another key application of G-gels is their ability to preserve, and even restore, enzyme activity. Because they begin as liquids and form gels at body temperature, the G-gels could be used to encapsulate live cells, enzymes, or other materials for delivery into the human body, with potential applications in drug and gene delivery, as well as implantable devices. Yu has also demonstrated the ability of G-gels to keep certain enzymes stable for months at room temperature, which has captured the attention of cosmetics and sunscreen companies.

Gifted scientist
Yu joined Rensselaer as a doctoral student in 2004, after earning his bachelor's degree in chemistry and master's degree in polymer science from Nankai University in China. In early 2005 he joined the research group of Rensselaer Professor Linda McGown, who heads the Department of Chemistry and Chemical Biology.

"Tony is one of the most brilliant and most creative students with whom I've ever worked. The elegance and simplicity of his inventions belie their novelty and ingenuity," said McGown, who is also Yu's academic adviser. "It's been a privilege to work with such a gifted scientist."

In his time at Rensselaer, Yu has filed for two patents related to his G-gel research, co-authored two journal papers, and delivered 10 presentations. He received the prestigious Rensselaer 2008 Founders Award for of Excellence, as well as the 2008 Slezak Memorial Fellowship and Baruch '60 Award for Excellence in Energy-Related Research from Rensselaer. He is also an active member and former coach of Rensselaer intramural soccer and basketball teams.

Yu hails from the scenic city of Jiujiang, China, near the foot of Lushan Mountain. He expects to earn his doctorate in analytical chemistry from Rensselaer this spring.

Yu's wife, Yuexi Wang, is a graduate student in chemistry at Rensselaer. Their daughter, Grace, is 8 months old.

The Lemelson-MIT Program
Yu joins last year's winner of the $30,000 Lemelson-Rensselaer Student Prize, graduate student Martin Schubert, who invented the first polarized light emitting diodes (LED), an innovation that promises to improve the energy-efficiency and performance of liquid crystal displays (LCDs) for televisions, computers, cell phones, cameras, and other devices. In 2007, Rensselaer doctoral student Brian Schulkin won the first-ever $30,000 Lemelson-Rensselaer Student Prize for developing the first portable terahertz sensing device, the "Mini-Z," which has since been commercialized and brought to market.

The $30,000 Lemelson-Rensselaer Student Prize is funded through a partnership with the Lemelson-MIT Program, which has awarded the $30,000 Lemelson-MIT Student Prize to outstanding student inventors at MIT since 1995.

Geoffrey von Maltzahn, a graduate student in the Harvard-MIT Division of Health Sciences and Technology, is the 2009 winner of the $30,000 Lemelson-MIT Student Prize. Von Maltzahn's inventions include a new class of therapeutics that provide more precision to cancer ablation, and a communicating system of nanoparticles to more efficiently deliver drugs to tumors — enhancing the overall efficacy of cancer therapy. He is also the co-founder of two companies dedicated to this research and development. More information is available at http://web.mit.edu/invent/n-pressreleases/n-press-09SP.html.

"The Lemelson-MIT Collegiate Student Prize finalists and winners have the potential to be the technological and entrepreneurial leaders of tomorrow," states Joshua Schuler, Executive Director of the Lemelson-MIT Program. "The winners were selected based on the potential societal impact of their inventions, their ability to act as role models, and their unwavering dedication to invention. These innovators are helping to close the gap between science and societal needs by making contributions that will foster cultural appreciation for invention's role in strengthening the U.S. economy."

The Lemelson-MIT Program recognizes outstanding inventors, encourages sustainable new solutions to real-world problems, and enables and inspires young people to pursue creative lives and careers through invention.

Jerome H. Lemelson, one of U.S. history's most prolific inventors, and his wife, Dorothy, founded the Lemelson-MIT Program at the Massachusetts Institute of Technology in 1994. It is funded by the Lemelson Foundation, a philanthropy that celebrates and supports inventors and entrepreneurs in order to strengthen social and economic life in the U.S. and developing countries. For more information, go to web.mit.edu/invent/.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Nanomedicine

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Discoveries

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Announcements

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE