Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > UT nano scientist gets $7 million DoD Innovator Award for breast cancer research

Mauro Ferrari, Ph.D., a nanomedicine scientist at The University of Texas Health Science Center at Houston and The University of Texas M. D. Anderson Cancer Center, has received a five-year, $7 million Innovator Award from the U.S. Department of Defense (DoD) Breast Cancer Research Program to develop a targeted new delivery system for breast cancer drugs.

UT nano scientist gets $7 million DoD Innovator Award for breast cancer research

Houston, TX | Posted on March 4th, 2009

If this new approach proves successful, it could increase the efficiency of drug delivery by concentrating more drug at the site of a tumor. A more efficient drug delivery system has the potential to reduce side effects associated with these drugs.

In global competition, Ferrari was the sole recipient of the DoD Breast Cancer Innovator Award for his proposal submitted in 2008, making him the 17th recipient of this unique award in the last eight years. The Innovator Award is offered to support visionary individuals who have demonstrated creativity, innovative work and leadership in any field who will focus their talents on breast cancer.

"Dr. Ferrari is translating advances in nanotechnology into the prevention and treatment of human diseases; that is why we are here," said Larry Kaiser, M.D., president of the UT Health Science Center at Houston. "His work in the area of cancer is particularly promising and Dr. Ferrari's leadership in this collaborative approach is significant."

Right now, when doctors inject a breast cancer drug, only a small percentage reaches malignant cells. The remaining drug circulates through blood vessels and can kill healthy, non-cancerous tissue. Side effects can include fatigue, hair loss and diarrhea.

With conventional chemotherapy, approximately one of every 100,000 drug molecules reaches its intended destination.

Ferrari's proposed solution to this problem is to package these drugs in miniaturized carriers engineered to search out, recognize and release their payload at the site of the tumor. These nanocarriers are about one hundredth the size of a strand of hair and their contents are measured in billionths of a meter (nanometer).

"Dr. Ferrari is developing new ways to deliver treatments to cancer cells without attacking normal tissue," said Capt. E. Melissa Kaime, M.D., director of the DoD Congressionally Directed Medical Research Programs, the funding agency. "Through the Innovator Award, Dr. Ferrari will have the funding and freedom to pursue these novel and visionary approaches toward eradicating breast cancer."

In 2008, an estimated 182,460 women in the United States were diagnosed with cancer breast and approximately 40,480 died.

When prescribing breast cancer drugs, doctors must weigh risks and benefits. If they order too much drug, it could increase side effects for the patient. If doctors fail to administer enough medication, the cancer may continue to grow.

"Improving cancer treatment poses a complex scientific challenge requiring sophisticated, collaborative research expertise across specialties and across institutions," said John Mendelsohn, M.D., president of the UT M. D. Anderson Cancer Center. "The Innovator Award recognizes Dr. Ferrari's leadership in nanotechnology and in cultivating this team-science approach. We are pleased to contribute our expertise in oncology and in nanoparticle production and targeting to his outstanding research program."

Ferrari's lab has begun preliminary work on the nanocarriers, which could be loaded with therapeutics, diagnostics or a combination of both and designed to hone in on the blood vessels that support tumor growth. Once there, the biocompatible nanocarriers would degrade into harmless byproducts and release the medication.

Ferrari's immediate goal is to significantly increase the concentration of a therapeutic drug in a breast cancer tumor in a pre-clinical study.

Getting the nanocarriers through the body's vast circulatory system and to the site of a breast tumor is no easy task, Ferrari said. The nanocarriers must avoid being corrupted by enzymes, swallowed up by the body's immune system and trapped inside blood vessels.

To avoid biological barriers, Ferrari uses a multi-stage delivery system. The first stage goes to the inner wall of a blood vessel near the diseased cells. As the nanocarrier degrades, it releases the second stage - tiny nanoparticles that penetrate the walls of the inner blood vessels and enter the diseased cells. The third stage is then released and it consists of either the medication to kill the tumor cells or the contrasting agents used for quality images, or both.

Ferrari's nanocarriers can be customized to target different breast cancer presentations. They can be designed to release their payloads over a matter of hours or months. Their shapes can be specifically designed to increase the likelihood of reaching the targeted blood vessels that feed tumor cells.

"Dr. Ferrari and his team will develop multiple innovative treatment modalities that are individualized to treat each patient's unique breast cancer tumor, and possibly also prevent the cancer from recurring or metastasizing," Kaime said.

Ferrari's team includes leaders in mathematical design, particle fabrication and pre-clinical testing from the UT Health Science Center and the UT M.D. Anderson Cancer Center.

The team includes patient advocate, Anne Meyn, who was diagnosed with breast cancer in 1989 and knows firsthand what it is like to undergo chemotherapy, as well as surgery. "We have the potential to greatly reduce side effects by putting chemotherapeutic drugs into the intended areas," she said.

Ferrari's collaborating investigators from the UT Health Science Center include: Paolo Decuzzi, Ph.D., associate professor of The University of Texas School of Health Information Sciences at Houston (SHIS); Vittorio Cristini, Ph.D., associate professor of SHIS; Takemi Tanaka, Ph.D., research assistant professor in the NanoMedicine Division; Xuewu Liu, Ph.D., research assistant professor in the NanoMedicine Division; Ennio Tasciotti, Ph.D., research assistant professor in the NanoMedicine Division; and David Gorenstein, Ph.D., deputy director of the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases.

Collaborating investigators from the UT M. D. Anderson Cancer Center include: Renata Pasqualini, Ph.D., professor of genitourinary medical oncology; Gabriel Lopez-Berestein, M.D., professor of experimental therapeutics; Anil Sood, M.D., professor of gynecologic oncology; Funda Meric-Bernstam, M.D., associate professor of surgical oncology; and Chun Li, Ph.D., professor of experimental diagnostic imaging.

The program's Clinical Breast Cancer Advisory Board is chaired by Gabriel Hortobagyi, M.D., director of the Multidisciplinary Breast Cancer Research Program at the UT M. D. Anderson Cancer Center. Other board members from the UT M. D. Anderson Cancer Center include: Lajos Pusztai, M.D., D.Phil., associate professor of breast medical oncology; Ana Maria Gonzalez-Angulo, M.D., assistant professor of breast medical oncology; Naoto Ueno, M.D., Ph.D., associate professor of breast medical oncology; Meric-Bernstam; and Massimo Cristofanilli, M.D., associate professor of breast medical oncology.

Members of the Overall Advisory Board are: Lee Hartwell, Ph.D., Nobel Laureate and president/director of the Fred Hutchinson Cancer Research Center, Seattle; Robert S. Langer, Sc.D., one of 14 Institute Professors (the highest honor awarded to a faculty member) at the Massachusetts Institute of Technology (MIT) and recipient of the 2006 United States National Medal of Science; and two executives from the UT M. D. Anderson Cancer Center, Mendelsohn and Hortobagyi.

Ferrari is the deputy chairman of the Biomedical Engineering Department at the UT Health Science Center, an inter-institutional venture that also involves the UT M. D. Anderson Cancer Center and The University of Texas at Austin.

He serves as adjunct professor of bioengineering at Rice University, adjunct professor of biochemistry and molecular biology at The University of Texas Medical Branch at Galveston, adjunct professor of mathematics and mechanical engineering at the University of Houston and president of the Alliance for NanoHealth, Houston.


Media Contact:
Robert Cahill

Copyright © University of Texas at Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014


Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014


SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014


Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014


Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014


Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Focal blood-brain-barrier disruption with high-frequency pulsed electric fields August 12th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE