Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ‘Nanostitching’ could strengthen airplane skins, more

Schematics showing carbon nanotubes bridging the gap between plies of an advanced composite. 
CREDIT: Courtesy Wardle lab, MIT
Schematics showing carbon nanotubes bridging the gap between plies of an advanced composite.
CREDIT: Courtesy Wardle lab, MIT

Abstract:
MIT engineers are using carbon nanotubes only billionths of a meter thick to stitch together aerospace materials in work that could make airplane skins and other products some 10 times stronger at a nominal increase in cost.

‘Nanostitching’ could strengthen airplane skins, more

Cambridge, MA | Posted on March 4th, 2009

Moreover, advanced composites reinforced with nanotubes are also more than one million times more electrically conductive than their counterparts without nanotubes, meaning aircraft built with such materials would have greater protection against damage from lightning, said Brian L. Wardle, the Charles Stark Draper Assistant Professor in the Department of Aeronautics and Astronautics.

Wardle is lead author of a theoretical paper on the new nanotube-reinforced composites that will appear in the Journal of Composite Materials (jcm.sagepub.com). He also described the work as keynote speaker at a Society of Plastics Engineers conference this week.

The advanced materials currently used for many aerospace applications are composed of layers, or plies, of carbon fibers that in turn are held together with a polymer glue. But that glue can crack and otherwise result in the carbon-fiber plies coming apart. As a result, engineers have explored a variety of ways to reinforce the interface between the layers by stitching, braiding, weaving or pinning them together.

All of these processes, however, are problematic because the relatively large stitches or pins penetrate and damage the carbon-fiber plies themselves. "And those fiber plies are what make composites so strong," Wardle said.

So Wardle wondered whether it would make sense to reinforce the plies in advanced composites with nanotubes aligned perpendicular to the carbon-fiber plies. Using computer models of how such a material would fracture, "we convinced ourselves that reinforcing with nanotubes should work far better than all other approaches," Wardle said. His team went on to develop processing techniques for creating the nanotubes and for incorporating them into existing aerospace composites, work that was published last year in two separate journals.

How does nanostitching work? The polymer glue between two carbon-fiber layers is heated, becoming more liquid-like. Billions of nanotubes positioned perpendicular to each carbon-fiber layer are then sucked up into the glue on both sides of each layer. Because the nanotubes are 1000 times smaller than the carbon fibers, they don't detrimentally affect the much larger carbon fibers, but instead fill the spaces around them, stitching the layers together.

"So we're putting the strongest fibers known to humankind [the nanotubes] in the place where the composite is weakest, and where they're needed most," Wardle said. He noted that these dramatic improvements can be achieved with nanotubes comprising less than one percent of the mass of the overall composite. In addition, he said, the nanotubes should add only a few percent to the cost of the composite, "while providing substantial improvements in bulk multifunctional properties."

Wardle's co-authors on the Journal of Composite Materials paper are Joaquin Blanco, a visiting graduate student in the Department of Aeronautics and Astronautics, Enrique J. Garcia SM '06, and Roberto Guzman deVilloria, a postdoctoral associate in the department.

This research was sponsored by MIT's Nano-Engineered Composite aerospace STructures (NECST) Consortium ( necst.mit.edu ).

Written by Elizabeth A. Thomson, MIT News Office

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Elizabeth A. Thomson
MIT News Office

617-258-5402

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Discoveries

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Aerospace/Space

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE