Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne scientists pinpoint mechanism to increase magnetic response of ferromagnetic semiconductor under high pressure

A ferromagnetic-semiconductor europium oxide sample is subjected to high pressures in a diamond anvil cell. The electronic structure is simultaneously probed with circularly polarized X-rays at the Advanced Photon Source, revealing the mechanism responsible for the strengthening of magnetic interactions under pressure.
A ferromagnetic-semiconductor europium oxide sample is subjected to high pressures in a diamond anvil cell. The electronic structure is simultaneously probed with circularly polarized X-rays at the Advanced Photon Source, revealing the mechanism responsible for the strengthening of magnetic interactions under pressure.

Abstract:
Europium oxide may help usher in next generation of microelectronics

Argonne scientists pinpoint mechanism to increase magnetic response of ferromagnetic semiconductor under high pressure

ARGONNE, IL | Posted on March 2nd, 2009

When squeezed, electrons increase their ability to move around. In compounds such as semiconductors and electrical insulators, such squeezing can dramatically change the electrical and magnetic properties.

Under ambient pressure, europium oxide (EuO) becomes ferromagnetic only below 69 Kelvin, limiting its applications. However, its magnetic ordering temperature is known to increase with pressure, reaching 200 Kelvin when squeezed by 150,000 atmospheres. The relevant changes in electronic structure responsible for such dramatic changes, however, remained elusive until recently.

Now scientists at the U.S. Department of Energy's Argonne National Laboratory have manipulated electron mobility and pinpointed the mechanism controlling the strength of magnetic interactions and, hence, the material's magnetic ordering temperature.

"EuO is a ferromagnetic semiconductor and is a material that can carry spin polarized currents, which is an integral element of future devices aimed at manipulating both the spin and the charge of electrons in new generation microelectronics," said Argonne postdoctoral researcher Narcizo Souza-Neto.

Using powerful X-rays from the Advanced Photon Source to probe the material's electronic structure under pressure, Souza-Neto and Argonne physicist Daniel Haskel reported in the February 6 issue of Physical Review Letters that localized, 100 percent polarized Eu 4f electrons become mobile under pressure by hybridizing with neighboring, extended electronic states. The increased mobility enhances the indirect magnetic coupling between Eu spins resulting in a three-fold increase in the ordering temperature. The paper, "Pressure-induced electronic mixing and enhancement of ferromagnetic ordering in EuX (X=O,S,Se,Te) magnetic semiconductors," is available online.

While the need for large applied pressures may seem a burden for applications, large compressive strains can be generated at interfacial regions in EuO films by varying the mismatch in lattice parameter with selected substrates. By pinpointing the mechanism the research provides a road map for manipulating the ordering temperatures in this and related materials, e.g., through strain or chemical substitutions with the ultimate goal of reaching 300 Kelvin (room temperature).

"Manipulation of strain," Haskel said, "adds a new dimension to the design of novel devices based on injection, transport and detection of high spin-polarized currents in magnetic/semiconductor hybrid structures."

Other authors in the paper are graduate student Yuan-Chieh Tseng (Northwestern University) and Gerard Lapertot (CEA-Grenoble).

Funding for this research was provided by the U.S. Department of Energy's Office of Science, the single largest supporter of basic research in the physical sciences in the United States.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Follow Argonne on Twitter at twitter.com/argonne.

For more information, please click here

Contacts:
Brock Cooper
630/252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Chip Technology

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Speed at its limits September 30th, 2014

Discoveries

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE