Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Instant insight: Bone repair breakthrough

March 1st, 2009

Instant insight: Bone repair breakthrough

Abstract:
Bone fracture is very common among the elderly as bones become more brittle as we age. Active young people also have a high risk of bone fracture through every day life and sporting activities. If a fracture is small, it can be filled with bone cement, such as polymethylmethacrylate. However, if the fracture is large, more durable metal implants, such as titanium and titanium-based alloys, are used. The goal is to not only fill the fracture space with a strong material that can support the body's weight, but also to promote new bone growth to fully restore the bone's functions.

In the past, bone implants were made of inert materials, chosen because they didn't severely influence bodily functions or generate scar tissue, which is a thick, insensitive tissue layer that can form around an implant. But this simple design principle causes implants to loosen from the surrounding bone after around 10 to 15 years. Loosening becomes worse with time and can cause significant pain. As a result, patients often undergo additional surgery (called revision surgery) to remove the loose implant and insert a new one. Revision surgery is clearly undesirable as it is costly, painful and requires therapy all over again for the patient.

It is unsurprising that there has been an on-going effort to create implants that can integrate into the surrounding natural bone for the patient's lifetime. Using their understanding of bone composition and the bone-forming process, scientists have developed various methods to transform these once inert implants into implants that can promote bone growth.

One of the first approaches to make more proactive bone implants uses surface chemistry to encourage the implant to interact with osteoblasts (bone-forming cells). This method has resulted in a number of implant materials, such as bioactive glass, that show good bone formation. However, scientists often need to resort to trial and error processes to find an implant material that not only increases bone growth but also has good mechanical properties for use in cementless implants, such as the hip implant. Such combinations are not always easy to find in one material or even a composite of materials.

Nanotechnology has taken a bold new step towards improving orthopedic implant devices. Orthopedic nanotechnology is based on understanding cell-implant interactions. Cells do not interact directly with an implant but instead interact through a layer of proteins that absorb almost instantaneously to the implant after insertion. Scientists have improved numerous implant materials, including titanium and titanium alloys, porous polymers, bone cements and hydroxyapatite, by placing nanoscale features on their surfaces. The bulk materials' properties remain unchanged, maintaining their desirable mechanical properties, but the surface changes enhance the interactions with proteins. This causes bone-forming cells to adhere to the implant and activates them to grow more bone.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Nanomedicine

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Polymeric Nanocarriers Improve Performance of Anticancer Drugs April 30th, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

Discoveries

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Announcements

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project