Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Instant insight: Bone repair breakthrough

March 1st, 2009

Instant insight: Bone repair breakthrough

Abstract:
Bone fracture is very common among the elderly as bones become more brittle as we age. Active young people also have a high risk of bone fracture through every day life and sporting activities. If a fracture is small, it can be filled with bone cement, such as polymethylmethacrylate. However, if the fracture is large, more durable metal implants, such as titanium and titanium-based alloys, are used. The goal is to not only fill the fracture space with a strong material that can support the body's weight, but also to promote new bone growth to fully restore the bone's functions.

In the past, bone implants were made of inert materials, chosen because they didn't severely influence bodily functions or generate scar tissue, which is a thick, insensitive tissue layer that can form around an implant. But this simple design principle causes implants to loosen from the surrounding bone after around 10 to 15 years. Loosening becomes worse with time and can cause significant pain. As a result, patients often undergo additional surgery (called revision surgery) to remove the loose implant and insert a new one. Revision surgery is clearly undesirable as it is costly, painful and requires therapy all over again for the patient.

It is unsurprising that there has been an on-going effort to create implants that can integrate into the surrounding natural bone for the patient's lifetime. Using their understanding of bone composition and the bone-forming process, scientists have developed various methods to transform these once inert implants into implants that can promote bone growth.

One of the first approaches to make more proactive bone implants uses surface chemistry to encourage the implant to interact with osteoblasts (bone-forming cells). This method has resulted in a number of implant materials, such as bioactive glass, that show good bone formation. However, scientists often need to resort to trial and error processes to find an implant material that not only increases bone growth but also has good mechanical properties for use in cementless implants, such as the hip implant. Such combinations are not always easy to find in one material or even a composite of materials.

Nanotechnology has taken a bold new step towards improving orthopedic implant devices. Orthopedic nanotechnology is based on understanding cell-implant interactions. Cells do not interact directly with an implant but instead interact through a layer of proteins that absorb almost instantaneously to the implant after insertion. Scientists have improved numerous implant materials, including titanium and titanium alloys, porous polymers, bone cements and hydroxyapatite, by placing nanoscale features on their surfaces. The bulk materials' properties remain unchanged, maintaining their desirable mechanical properties, but the surface changes enhance the interactions with proteins. This causes bone-forming cells to adhere to the implant and activates them to grow more bone.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Nanomedicine

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

New nanoparticle technology developed to treat aggressive thyroid cancer: Platform designed to deliver nanotherapy effective in preclinical models of metastatic anaplastic thyroid cancer June 21st, 2016

Discoveries

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic