Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Instant insight: Bone repair breakthrough

March 1st, 2009

Instant insight: Bone repair breakthrough

Abstract:
Bone fracture is very common among the elderly as bones become more brittle as we age. Active young people also have a high risk of bone fracture through every day life and sporting activities. If a fracture is small, it can be filled with bone cement, such as polymethylmethacrylate. However, if the fracture is large, more durable metal implants, such as titanium and titanium-based alloys, are used. The goal is to not only fill the fracture space with a strong material that can support the body's weight, but also to promote new bone growth to fully restore the bone's functions.

In the past, bone implants were made of inert materials, chosen because they didn't severely influence bodily functions or generate scar tissue, which is a thick, insensitive tissue layer that can form around an implant. But this simple design principle causes implants to loosen from the surrounding bone after around 10 to 15 years. Loosening becomes worse with time and can cause significant pain. As a result, patients often undergo additional surgery (called revision surgery) to remove the loose implant and insert a new one. Revision surgery is clearly undesirable as it is costly, painful and requires therapy all over again for the patient.

It is unsurprising that there has been an on-going effort to create implants that can integrate into the surrounding natural bone for the patient's lifetime. Using their understanding of bone composition and the bone-forming process, scientists have developed various methods to transform these once inert implants into implants that can promote bone growth.

One of the first approaches to make more proactive bone implants uses surface chemistry to encourage the implant to interact with osteoblasts (bone-forming cells). This method has resulted in a number of implant materials, such as bioactive glass, that show good bone formation. However, scientists often need to resort to trial and error processes to find an implant material that not only increases bone growth but also has good mechanical properties for use in cementless implants, such as the hip implant. Such combinations are not always easy to find in one material or even a composite of materials.

Nanotechnology has taken a bold new step towards improving orthopedic implant devices. Orthopedic nanotechnology is based on understanding cell-implant interactions. Cells do not interact directly with an implant but instead interact through a layer of proteins that absorb almost instantaneously to the implant after insertion. Scientists have improved numerous implant materials, including titanium and titanium alloys, porous polymers, bone cements and hydroxyapatite, by placing nanoscale features on their surfaces. The bulk materials' properties remain unchanged, maintaining their desirable mechanical properties, but the surface changes enhance the interactions with proteins. This causes bone-forming cells to adhere to the implant and activates them to grow more bone.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Nanomedicine

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project