Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Probing the brain wirelessly

March 1st, 2009

Probing the brain wirelessly

Abstract:
IR-absorbing lead selenide particles form the basis of a method for the study of neuronal activation in samples of brain tissues without the need for hard-wired electrodes. The technique instead utilises light-triggered nanostructured semiconductor photoelectrodes to probe activity.

Philip Larimer, Richard Todd Pressler, and Ben Strowbridge of the Department of Neurosciences, at Case Western Reserve University, in Cleveland, Ohio, working with Yixin Zhao and Clemens Burda in CWRU's Center for Chemical Dynamics and Nanomaterials Research explain their approach in the current issue of Angewandte Chemie.

Understanding brain function remains one of the great challenges facing science. For example, simply understanding how brain regions process synaptic inputs to generate defined responses is a puzzle.

One particularly promising avenue of research in this area remains the study of the electrical conduction of stimuli by nerve cells, neurons. However, in order to study neuronal circuits in detail, a sharp metal electrode is usually introduced into the living brain or a brain slice to introduce a current. Such a crude approach is too blunt a probe to discern the highly complex activation patterns of natural nerve stimuli. Moreover, this approach causes direct damage to tissue because of unwanted electrochemical side reactions.

Source:
spectroscopynow.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanomedicine

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE