Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > New solar-panel technology 'more than oilsands': Researcher

February 25th, 2009

New solar-panel technology 'more than oilsands': Researcher

Abstract:
Twenty years from now, if roofs around the world are speckled with power-generating plastic solar panels, it may be thanks, at least in part, to a microscopic layer of Canadian technology sandwiched inside each one.

Researchers at the National Institute for Nanotechnology at the University of Alberta have developed a method that increases the efficiency in plastic photovoltaic cells by 30 per cent, a breakthrough they say may someday help make cheap, clean solar power available to the masses.

"I think this is kind of important to get out for Alberta," said Jillian Buriak, a Canada Research Chair in chemistry who helped lead the project. "In terms of energy, we're more than oilsands."

Buriak and the rest of the team, an interdisciplinary group that includes engineers, chemists and physicists, made their advancement by developing a compound to spread between two layers of the plastic cell. Just one billionth of a metre thick, the compound helps energy jump from one level to another on its way to becoming usable electricity.

Source:
canada.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Solar/Photovoltaic

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project