Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Demonstrate Novel ‘Quantum Data Buffering’ Scheme

In this simplified representation of the experimental setup for a “quantum buffer,” a cell containing rubidium gas is used to produce a pair of information-rich entangled images. One of the images goes through a second rubidium gas cell and slows down, which is potentially useful for feeding data at properly timed intervals to future quantum computers. The delay can be controlled such that, during the time it takes one image to travel a centimeter, the other image can travel up to 8 meters. The twisted loops illustrate the entanglement between the images.

Credit: A. Marino/JQI
In this simplified representation of the experimental setup for a “quantum buffer,” a cell containing rubidium gas is used to produce a pair of information-rich entangled images. One of the images goes through a second rubidium gas cell and slows down, which is potentially useful for feeding data at properly timed intervals to future quantum computers. The delay can be controlled such that, during the time it takes one image to travel a centimeter, the other image can travel up to 8 meters. The twisted loops illustrate the entanglement between the images.

Credit: A. Marino/JQI

Abstract:
In a new demonstration of physicists' growing ability to control the "spooky" quantum dynamics phenomenon called entanglement, researchers from the National Institute of Standards and Technology (NIST) and the University of Maryland (UM) have announced* that they can cache sizable amounts information in a "quantum buffer" without disturbing the fragile entanglement of quantum states at the heart of the strange world of quantum computing. Such a buffer could be used to control the data flow inside a yet-to-be-built quantum computer that theoretically could solve problems unreachable by the best conventional computers.

Researchers Demonstrate Novel ‘Quantum Data Buffering’ Scheme

GAITHERSBURG, MD | Posted on February 25th, 2009

"If you want to set up some sort of communications system or a quantum information-processing system, you need to control the arrival time of one data stream relative to other data streams coming in," says Alberto Marino of the NIST/UM Joint Quantum Institute (JQI), lead author of the paper. "We can accomplish the delay in a compact setup, and we can rapidly change the delay if we want, something that would not be possible with usual laboratory apparatus such as beamsplitters and mirrors."

This new work follows up on the researchers' landmark creation in 2008 of pairs of multi-pixel quantum images (see "Physicists Produce Quantum-Entangled Images.") In the JQI work, each quantum image is carried by a light beam and consists of up to 100 "pixels." A pixel in one quantum image displays random and unpredictable changes say, in intensity, yet the corresponding pixel in the other image exhibits identical intensity fluctuations at the same time, and these fluctuations are independent from fluctuations in other pixels. This entanglement can persist even if the two images are physically disconnected from one another.

By using a gas cell to slow down one of the light beams to 500 times slower than the speed of light, the group has demonstrated that they could delay the arrival time of one of the entangled images at a detector by up to 27 nanoseconds. The correlations between the two entangled images still occur—but they are out of sync. A flicker in the first image would have a corresponding flicker in the slowed-down image up to 27 nanoseconds later.

While such "delayed entanglement" has been demonstrated before for individual photons, it has never been accomplished in information-rich quantum images. "What gives our system the potential to store lots of data is the combination of having multiple-pixel images and the possibility of each pixel containing 'continuous' values for properties such as the intensity," says co-author Raphael Pooser.

For more information, see "NIST/Maryland Researchers Demonstrate 'Quantum Data Buffering' Scheme."

* A.M. Marino, R.C. Pooser, V. Boyer and P.D. Lett. Tunable delay of Einstein-Podolsky-Rosen entanglement. Nature. Feb. 12, 2009.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Ben Stein

(301) 975-3097

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“NIST/Maryland Researchers Demonstrate ’Quantum Data Buffering’ Scheme.”

Related News Press

News and information

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Quantum Computing

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Rainbow-catching waveguide could revolutionize energy technologies: By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology March 28th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Waterloo, Technion Partner to Advance Research, Commercialization March 19th, 2014

Discoveries

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Announcements

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE