Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Yale engineers revolutionize nano-device fabrication using amorphous metals

Various parts (nano-molds, nano-wires, gears, membrane, scalpels, and tweezers) fabricated by molding metallic glass over wide range of length scales -- from 13 nm to several millimeters.

Credit: Kumar/Schroers(Yale)
Various parts (nano-molds, nano-wires, gears, membrane, scalpels, and tweezers) fabricated by molding metallic glass over wide range of length scales -- from 13 nm to several millimeters.

Credit: Kumar/Schroers(Yale)

Abstract:
Yale engineers have created a process that may revolutionize the manufacture of nano-devices from computer memory to biomedical sensors by exploiting a novel type of metal. The material can be molded like plastics to create features at the nano-scale and yet is more durable and stronger than silicon or steel. The work is reported in the February 12 issue of Nature.

Yale engineers revolutionize nano-device fabrication using amorphous metals

New Haven, CT | Posted on February 11th, 2009

The search for a cost-effective and manageable process for higher-density computer chip production at the nano-scale has been a challenge. One solution is making nano-scale devices by simple stamping or molding, like the method used for fabricating CDs or DVDs. This however requires stamps or master molds with nano-scale features. While silicon-based molds produce relatively fine detail, they are not very durable. Metals are stronger, but the grain size of their internal structure does not allow nano-scale details to be imprinted on their surfaces.

Unlike most metals, "amorphous metals" known as bulk metallic glasses (BMGs) do not form crystal structures when they are cooled rapidly after heating. Although they seem solid, they are more like a very slow-flowing liquid that has no structure beyond the atomic level — making them ideal for molding fine details, said senior author Jan Schroers of the Yale School of Engineering & Applied Science.

Researchers have been exploring the use of BMGs for about a decade, according to Schroers. "We have finally been able to harness their unusual properties to transform both the process of making molds and producing imprints," he said. "This process has the potential to replace several lithographic steps in the production of computer chips."

Schroers says BMGs have the pliability of plastics at moderately elevated temperatures, but they are stronger and more resilient than steel or metals at normal working temperatures.

"We now can make template molds that are far more reliable and lasting than ones made of silicon and are not limited in their detail by the grain size that most metals impose," said Schroers.

To actually get detail at the nano-scale the researchers had to overcome an issue faced in any molding process — how to get the material to cover the finest detail, and then how to separate the material intact from the mold. Surfaces of liquid metals exhibit high surface tension and capillary effects that can interfere in the molding.

Postdoctoral fellow Golden Kumar found that by altering the mold-BMG combination they could create surfaces so that the atoms take advantage of their favorable interaction with the mold— to both fill the mold and then release the product.

In this paper, Schroers' team reports nano-patterning of details as small as 13 nanometers— about one ten-thousandth the thickness of a human hair — and the scientists expect that even finer detail will be possible since the BMGs are only limited by the size of a single atom.

While ‘plastics!' was the catchword of the 1960's, Schroers says, "We think ‘BMGs!' will be the buzz-word for the coming decade."

Hong Tang, assistant professor of mechanical engineering and electrical engineering at Yale was also an author of the paper. Funding for this research was from the National Science Foundation.

Citation: Nature (January 12, 2009)

####

For more information, please click here

Contacts:
Janet Rettig Emanuel

203-432-2157

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Jan Schroers

Yale School of Engineering& Applied Science

Golden Kumar

Hong Tang

Related News Press

News and information

Lifeboat Foundation Responds to Largest Ebola Outbreak in History October 2nd, 2014

Iran's Sharif University to Host 4th Conference on Nanostructured Solar Cells October 2nd, 2014

Multifunctional Cotton Fabrics Produced in Iran Using Nanotechnology October 2nd, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Memory Technology

Research mimics brain cells to boost memory power September 30th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Sensors

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Discoveries

Multifunctional Cotton Fabrics Produced in Iran Using Nanotechnology October 2nd, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Materials/Metamaterials

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Announcements

Lifeboat Foundation Responds to Largest Ebola Outbreak in History October 2nd, 2014

Iran's Sharif University to Host 4th Conference on Nanostructured Solar Cells October 2nd, 2014

Multifunctional Cotton Fabrics Produced in Iran Using Nanotechnology October 2nd, 2014

Graphene chips are close to significant commercialization October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE