Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Luna Research on Solar Cell Technology Published in Nature Materials

Abstract:
Luna Innovations' solar cell research of has been published in the prestigious journal Nature Materials. Paper discusses new approach of enhancing OPV device performance by using improved acceptor materials.

Luna Research on Solar Cell Technology Published in Nature Materials

Roanoke, VA | Posted on February 11th, 2009

Luna Innovations Incorporated (NASDAQ:LUNA) announces the solar cell research of scientists Dr. Claudia Cardona and Dr. Martin Drees has been published in the prestigious journal Nature Materials. The paper titled "Endohedral fullerenes for organic photovoltaic devices" presents a unique approach to enhance flexible, plastic solar cells, also known as organic photovoltaic (OPV) cells, by modifying the acceptor material rather than the donor material. The paper, which is co-authored by researchers from Georgetown University, University of California at Santa Barbara, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, describes how the efficiency improvement was achieved through the use of Luna's carbon nanomaterials.

"Organic solar cells offer the potential for clean, renewable energy at an affordable price," said Kent Murphy, Chairman and CEO of Luna Innovations. "These exciting energy harvesting devices can change the way we convert sunlight to electricity. Because they are flexible and easy to handle, they have potential for use in mobile communication devices, consumer electronics, fabrics, building materials, and more. An improvement in efficiency through the use of a novel acceptor molecule is unique to the industry and could enable solar cell manufacturers to increase performance and reduce costs."

Organic solar cells are made out of plastic-like polymers that serve as electron donors and are combined with fullerene nanomaterials, which serve as electron acceptors. Organic solar cells weigh less and are cheaper to manufacture compared to conventional inorganic silicon-based solar cells, which are presently favored by the solar industry. An existing disadvantage of organic solar cells is the efficiency at which they convert sunlight to electricity. Luna's solar cells use patented carbon nanomaterials to capture more energy in the photovoltaic process, which increases the organic solar cell efficiency.

"Our research demonstrates an entirely new approach of enhancing OPV device performance by using improved acceptor materials, and expands an area of OPV research that has remained relatively stagnant over the last decade," said Dr. Drees. "Luna's novel acceptor materials operate at high conversion efficiencies and are an excellent complement to the fast growing semi-conductive-polymer field. This demonstration is a significant advancement towards making practical organic solar cell devices."

This paper is an example of Luna's work in materials that could produce alternative energy forms. The company is focusing on integrating its carbon nanomaterial technology into the products of solar cell manufacturers making commercially viable products. Luna's nanomaterials have been independently verified at NREL as setting a new record for efficiency of the commercially available P3HT organic solar cell polymer. Luna continues its work to further optimize organic solar cell performance through government-funded technology development programs.

Luna's research efforts were supported by the National Science Foundation and Air Force Office of Scientific Research.

The paper in Nature Materials was scheduled for Advance Online Publication at www.nature.com/materials/, beginning on February 8, 2009. Papers published online before they have been allocated to a print issue are citable via a digital object identifier (DOI) number. The DOI for this paper is 10.1038/nmat2379. Once the paper is published electronically, the DOI can be used to retrieve the abstract and full text (abstracts are available to everyone, full text only to subscribers) by adding it to the following URL: dx.doi.org/.

####

For more information, please click here

Contacts:
Karin Clark
Phone: 540-769-8400

Copyright © Luna Innovations Incorporated

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Announcements

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Energy

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Solar/Photovoltaic

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE