Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Revolutionary microchip uses 30 times less power: 'Probabilistic' logic allows computer chip to run faster, use less power

Abstract:
In the first real-world test of a revolutionary type of computing that thrives on random errors, scientists have created a microchip that uses 30 times less electricity while running seven times faster than today's best technology. The U.S.-Singapore team developing the new technology, dubbed PCMOS [pronounced "pee-cee-moss"], revealed its results in San Francisco TODAY at the International Solid-State Circuits Conference (ISSCC), the premier forum for engineers and scientists working at the cutting edge of integrated-circuit design.

Revolutionary microchip uses 30 times less power: 'Probabilistic' logic allows computer chip to run faster, use less power

Houston, TX | Posted on February 8th, 2009

Conceived by Rice University Professor Krishna Palem, PCMOS piggybacks on the "complementary metal-oxide semiconductor" technology, or CMOS, that chipmakers already use. That means chipmakers won't have to buy new equipment to support PCMOS, or "probabilistic" CMOS. Although PCMOS runs on standard silicon, it breaks with computing's past by abandoning the set of mathematical rules -- called Boolean logic -- that have thus far been used in all digital computers. PCMOS instead uses probabilistic logic, a new form of logic developed by Palem and his doctoral student, Lakshmi Chakrapani.

"A significant achievement here is the validation of Rice's probabilistic analogue to Boolean logic using PCMOS," said Shekhar Borkar, an Intel Fellow and director of Intel's Microprocessor Technology Lab. "Coupled with the significant energy and speed advantages that PCMOS offers, this logic will prove extremely important because basic physics dictates that future transistor-based logic will need probabilistic methods."

Silicon transistors become increasingly 'noisy' as they get smaller, but engineers have historically dealt with this by boosting the operating voltage to overpower the noise and ensure accurate calculations. Chips with more and smaller transistors are consequently more power-hungry.

"PCMOS is fundamentally different," Palem said. "We lower the voltage dramatically and deal with the resulting computational errors by embracing the errors and uncertainties through probabilistic logic."

PCMOS was jointly validated by Rice and Nanyang Technological University (NTU) in Singapore via a joint institute that Palem founded in 2007, the Institute for Sustainable Nanoelectronics (ISNE). Directed by Palem, ISNE is based at NTU, where the first prototype PCMOS chips were manufactured last year in collaboration with Professor Yeo Kiat Seng and his team.

The prototypes were application-specific integrated circuits, or ASICs, that were designed solely for encryption. Unlike the general-purpose microprocessors that power PCs and laptops, ASICs are designed for a specific purpose, and they are "embedded" by the millions each year in a growing constellation of products like automobiles, cell phones, MRI scanners and electronic toys.

The Rice-NTU team plans to follow its proof-of-concept work on encryption with proof-of-concept tests on microchips for cell phones, graphics cards and medical implants.

Palem said PCMOS is ideally suited for encryption, a process that relies on generating random numbers. It's equally well-suited for graphics, but for different reasons. In a streaming video application on a cell phone, for example, it is unnecessary to conduct precise calculations. The small screen, combined with the human brain's ability to process less-than-perfect pictures, results in a case where the picture looks just as good with a calculation that's only approximately correct.

"The key is to consider the value that the computed information has for the user," said Palem, who directs Rice's Value of Information-based Sustainable Embedded Nanocomputing Center, or VISEN. "Our goal is green computing. We're looking for applications where PCMOS can deliver as well as or better than existing technology but with a fraction of the energy."

If PCMOS can slash energy use for embedded ASICs in key devices, the implications are enormous. For consumers, it could mean the difference between charging a cell phone every few weeks instead of every few days. Globally, that would help reduce the information technology industry's carbon footprint.

"Based on our findings, we view PCMOS as a path to help IT become more 'green' even as it keeps pace with Moore's Law," said Palem, the Ken and Audrey Kennedy Professor of Computing, professor of computer science, professor of electrical and computer engineering, and professor of statistics.

Palem said he hopes PCMOS technology will enter the embedded computing market in as little as four years.

Palem's PCMOS research was funded by the Defense Advanced Research Projects Agency and Intel Corp.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,001 undergraduates and 2,144 graduate students; selectivity --12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
PHONE: 713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Chip Technology

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic