Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Water lilies inspire scientists to create large-scale graphene films

Abstract:
In the world of nanomaterials, scientists and engineers can create new structures with tiny building blocks as small as one billionth of a meter.

But in order to construct new materials and devices, researchers first need to understand how these tiny units interact with each other.

Water lilies inspire scientists to create large-scale graphene films

Chicago, IL | Posted on January 29th, 2009

One such building block is graphite oxide, which is often used to make graphene a hotly studied material that scientists believe could be used to produce low-cost carbon-based transparent and flexible electronics. Like graphene, graphite oxide is essentially a sheet that is only one atom thick, but can be as wide as tens of micrometers.

Jiaxing Huang, assistant professor of materials science and engineering at Northwestern University, and his research group at the McCormick School of Engineering and Applied Science set out to investigate how these graphite-oxide sheets assemble. Their results, published as the cover article in the Jan. 26 issue of the Journal of the American Chemical Society, surprised them.

"We were very curious how these extremely thin two-dimensional sheets interact with each other," Huang says. "This knowledge can also help to prepare better graphene thin films."

Huang and his group studied the sheets by putting them onto a water surface a process called Langmuir-Blodgett assembly, which makes the sheets stay flat and allows scientists to move them around.

The effect reminded the researchers of water lilies on a pond, and Huang asked his sister to help to create a Chinese water painting similar to that of Claude Monet's series of paintings "Water Lilies" to demonstrate the idea. The artwork was chosen as one of the first illustrated covers for the 130-year-old journal.

Researchers used a barrier to push the sheets together to see how they would interact and then "fished" the interacting sheets off the water surface using glass slides or silicon wafers. Huang and his colleagues expected to see that individual sheets had stacked one upon the other, like a shuffled deck of cards. Instead they found that the edges of the graphite oxide sheets rumpled as they were pushed together.

"This was quite a surprise for us," Huang says. "Now we understand that electrostatic repulsion is the dominant interaction when these sheets are pushed together in this edge-to-edge geometry. This prevents graphite oxide layers from overlapping with each other."

When squeezed even further, the sheets eventually formed an interlocking structure that becomes a continuous membrane.

This film consisting of flat, non-overlapping single layers tiling over large areas has been very difficult to achieve by conventional thin-film processing techniques such as drop casting or spraying.

This breakthrough could have two immediate technological impacts. "Because we can keep them close to each other and still keep them flat, it provides high coverage of the surface with the single layers which in turn will translate into high successful yield in graphene device fabrication," Huang says. "On the other hand, the continuous graphite oxide monolayer can be made into a transparent conductor after conversion to graphene."

Now, after studying how they interact edge-to-edge, Huang hopes to study face-to-face contact of the graphene-based materials. Stacking graphene sheets directly on top of each other will form graphite and lose the advantages of the single-atom-thick graphene materials. But Huang hopes to find a way to stack graphene without making graphite, which could create functional materials for energy-related applications such as electrodes for batteries, ultracapacitors and fuel cells.

"If we are good at making these tiny building blocks and if we can control how they assemble, we will create a lot of wonderful new things," Huang says.

In addition to Huang, co-authors of the paper include National Science Foundation graduate research fellow Laura Cote and postdoctoral fellow Franklin Kim, both of whom, according to Huang, "did a wonderful job" to create the high-quality graphite oxide sheets used in the experiment.

####

For more information, please click here

Contacts:
Kyle Delaney

847-467-4010

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Discoveries

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Announcements

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Fuel Cells

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Proton pinball on the catalyst: Moisture helps catalyst in fuel cells August 3rd, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic