Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Water lilies inspire scientists to create large-scale graphene films

Abstract:
In the world of nanomaterials, scientists and engineers can create new structures with tiny building blocks as small as one billionth of a meter.

But in order to construct new materials and devices, researchers first need to understand how these tiny units interact with each other.

Water lilies inspire scientists to create large-scale graphene films

Chicago, IL | Posted on January 29th, 2009

One such building block is graphite oxide, which is often used to make graphene — a hotly studied material that scientists believe could be used to produce low-cost carbon-based transparent and flexible electronics. Like graphene, graphite oxide is essentially a sheet that is only one atom thick, but can be as wide as tens of micrometers.

Jiaxing Huang, assistant professor of materials science and engineering at Northwestern University, and his research group at the McCormick School of Engineering and Applied Science set out to investigate how these graphite-oxide sheets assemble. Their results, published as the cover article in the Jan. 26 issue of the Journal of the American Chemical Society, surprised them.

"We were very curious how these extremely thin two-dimensional sheets interact with each other," Huang says. "This knowledge can also help to prepare better graphene thin films."

Huang and his group studied the sheets by putting them onto a water surface — a process called Langmuir-Blodgett assembly, which makes the sheets stay flat and allows scientists to move them around.

The effect reminded the researchers of water lilies on a pond, and Huang asked his sister to help to create a Chinese water painting similar to that of Claude Monet's series of paintings "Water Lilies" to demonstrate the idea. The artwork was chosen as one of the first illustrated covers for the 130-year-old journal.

Researchers used a barrier to push the sheets together to see how they would interact and then "fished" the interacting sheets off the water surface using glass slides or silicon wafers. Huang and his colleagues expected to see that individual sheets had stacked one upon the other, like a shuffled deck of cards. Instead they found that the edges of the graphite oxide sheets rumpled as they were pushed together.

"This was quite a surprise for us," Huang says. "Now we understand that electrostatic repulsion is the dominant interaction when these sheets are pushed together in this edge-to-edge geometry. This prevents graphite oxide layers from overlapping with each other."

When squeezed even further, the sheets eventually formed an interlocking structure that becomes a continuous membrane.

This film — consisting of flat, non-overlapping single layers tiling over large areas — has been very difficult to achieve by conventional thin-film processing techniques such as drop casting or spraying.

This breakthrough could have two immediate technological impacts. "Because we can keep them close to each other and still keep them flat, it provides high coverage of the surface with the single layers — which in turn will translate into high successful yield in graphene device fabrication," Huang says. "On the other hand, the continuous graphite oxide monolayer can be made into a transparent conductor after conversion to graphene."

Now, after studying how they interact edge-to-edge, Huang hopes to study face-to-face contact of the graphene-based materials. Stacking graphene sheets directly on top of each other will form graphite and lose the advantages of the single-atom-thick graphene materials. But Huang hopes to find a way to stack graphene without making graphite, which could create functional materials for energy-related applications such as electrodes for batteries, ultracapacitors and fuel cells.

"If we are good at making these tiny building blocks and if we can control how they assemble, we will create a lot of wonderful new things," Huang says.

In addition to Huang, co-authors of the paper include National Science Foundation graduate research fellow Laura Cote and postdoctoral fellow Franklin Kim, both of whom, according to Huang, "did a wonderful job" to create the high-quality graphite oxide sheets used in the experiment.

####

For more information, please click here

Contacts:
Kyle Delaney

847-467-4010

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Discoveries

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Energy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Fuel Cells

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Electrocatalyst nanostructures key to improved fuel cells, electrolyzers June 5th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project