Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > January 27, 2009 In This Issue: blue bullet For Refrigeration Problems, a Magnetically Attractive Solution blue bullet Taking the Stress

Transmission electron microscope (TEM) images show sections of a continuous 400-nanometer-thick magnetic film of a nickle-iron-copper-molybdenum alloy (top) and a film of the same alloy layered with silver every 100 nanometers (bottom). By relieving strain in the film, the silver layers promote the growth of notably larger crystal grains in the layered material as compared to the monolithic film (several are highlighted for emphasis). Electron diffraction patterns (insets) tell a similar story—the material with larger crystal grains display sharper, more discrete scattering patterns. (Color added for clarity.)

Credit: Bonevich, NIST
Transmission electron microscope (TEM) images show sections of a continuous 400-nanometer-thick magnetic film of a nickle-iron-copper-molybdenum alloy (top) and a film of the same alloy layered with silver every 100 nanometers (bottom). By relieving strain in the film, the silver layers promote the growth of notably larger crystal grains in the layered material as compared to the monolithic film (several are highlighted for emphasis). Electron diffraction patterns (insets) tell a similar story—the material with larger crystal grains display sharper, more discrete scattering patterns. (Color added for clarity.)

Credit: Bonevich, NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have discovered that a carefully built magnetic sandwich that interleaves layers of a magnetic alloy with a few nanometers of silver "spacer" has dramatically enhanced sensitivity—a 400-fold improvement in some cases. This material could lead to greatly improved magnetic sensors for a wide range of applications from weapons detection and non-destructive testing to medical devices and high-performance data storage.

January 27, 2009 In This Issue: blue bullet For Refrigeration Problems, a Magnetically Attractive Solution blue bullet Taking the Stress

GAITHERSBURG, MD | Posted on January 28th, 2009

Those applications and many others are based on thin films of magnetic materials in which the direction of magnetization can be switched from one orientation to another. An important characteristic of a magnetic film is its saturation field, the magnitude of the applied magnetic field that completely magnetizes the film in the same direction as the applied field—the smaller the saturation field, the more sensitive the device.

The saturation field is often determined by the amount of stress in the film—atoms under stress due to the pull of bonds with neighboring atoms are more resistant to changing their magnetic orientation. Metallic films develop not as a single monolithic crystal, like diamonds, but rather as a random mosaic of microscopic crystals called grains. Atoms on the boundaries between two different grains tend to be more stressed, so films with a lot of fine grains tend to have more internal stress than coarser grained films. Film stress also increases as the film is made thicker, which is unfortunate because thick films are often required for high magnetization applications.

The NIST research team discovered that magnetic film stress could be lowered dramatically by periodically adding a layer of a metal, having a different crystal structure or lattice spacing, in between the magnetic layers. Although the mechanism isn't completely understood, according to lead author William Egelhoff Jr., the intervening layers disrupt the magnetic film growth and induce the creation of new grains that grow to be larger than they do in the monolithic films. The researchers prepared multilayer films with layers of a nickel-iron-copper-molybdenum magnetic alloy each 100 nanometers (nm) thick, interleaved with 5-nm layers of silver. The structure reduced the tensile stress (over a monolithic film of equivalent thickness) by a factor of 200 and lowered the saturation field by a factor of 400.

The work has particular application in the design of "flux concentrators," magnetic structures that draw in external magnetic field lines and concentrate them in a small region. Flux concentrators are used to amplify fields in compact magnetic sensors used for a wide variety of applications.

* W.F. Egelhoff, Jr., J. Bonevich, P. Pong, C.R. Beauchamp, G.R. Stafford, J. Unguris, and R.D. McMichael. 400-fold reduction in saturation field by interlayering. J. Appl. Phys. 105, 013921 (2009). Published online Jan. 13, 2009. DOI:10.1063/1.3058673

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Michael Baum

(301) 975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Memory Technology

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

A single-atom magnet breaks new ground for future data storage April 15th, 2016

Ames Laboratory physicists discover new material that may speed computing April 12th, 2016

Sensors

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

Discoveries

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Announcements

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic