Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Microfluidic Devices Capture and Analyze Single Cancer Cells

Abstract:
One of the grand goals in nanotechnology is to develop a single microfluidic device that integrates all of the components needed to perform polymerase chain reaction (PCR)-based nucleic acid analyses. Experts predict that such a device would enable researchers to develop rapid assays for cancer and other life-threatening diseases while a patient is in the doctor's office.

Microfluidic Devices Capture and Analyze Single Cancer Cells

Bethesda, MD | Posted on January 17th, 2009

A team of investigators at the University of California, Berkeley not only has built such a device, but also has used it to measure changes in gene expression in individual cells following treatment with an agent designed to silence gene expression. The device features four distinct regions that capture single cells, break them apart, amplify the messenger RNA (mRNA) from the cells using reverse-transcriptase PCR, and then analyze and quantify the amplified nucleic acids. The team, led by Richard Mathies, Ph.D., and Carolyn Bertozzi, Ph.D., describes its new device in the journal Proceedings of the National Academy of Sciences of the United States of America.

Four complete devices reside on a glass wafer that is a mere 100 millimeters in diameter. A complete analysis, from cell capture to data output, takes less than 75 minutes. A fully integrated capillary electrophoresis system—a miniaturized version of a standard PCR analysis setup—is incorporated in each device and yields data in a format readily interpretable by anyone with PCR experience. The researchers note that the device should be capable of measuring the expression of 5 to 10 different genes simultaneously.

As a test of the device's capabilities, the researchers analyzed gene expression by Jurkat T-lymphocyte cells that were first treated with a small interfering RNA (siRNA) agent designed to reduce production of a protein known as GAPDH. When the cells were analyzed in bulk, using standard methods, the results showed that siRNA treatment reduced GAPDH expression to 21% of its original value before treatment. However, an analysis of individual cells showed that there were two populations of cells, one of which experienced complete silencing of GAPDH, whereas the other showed moderate gene silencing in which protein expression was cut in half.

One of main limitations of this device is that it uses a biochemical "trick" to capture cells. This trick involves growing the cells of interest in a special growth medium that enables the cell to present a specific chemical group on their cell membranes. This chemical group acts as a tether that can be used to capture the cells inside the microfluidic device. However, research by Weihong Tan, Ph.D., and his colleagues at the University of Florida details a different approach for capturing specific types of cancer cells, which could be used with the integrated mRNA analyzer.

Reporting its work in the journal Analytical Chemistry, Dr. Tan's group describes its use of aptamers to capture cancer cells in a microfluidic device. Aptamers are short, chemically synthesized pieces of DNA or RNA that bind strongly to protein targets, much like antibodies. Using the standard aptamer discovery technology known as SELEX, the researchers are able to quickly identify aptamers that bind to a specific cell type—in this case acute lymphocytic leukemia cells—while ignoring all others. The investigators then immobilized this aptamer on the surface of a microfluidic channel and used it to capture about 80 percent of the target cells in a mixture of cells. The purity of the captured cells was over 97%.

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Integrated microfluidic bioprocessor for single-cell gene expression analysis.”

View abstract - “Enrichment of cancer cells using aptamers immobilized on a microfluidic channel.”

Related News Press

News and information

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Microfluidics/Nanofluidics

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Blacktrace Holdings Ltd. to in-license PerkinElmer Technology August 8th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Dolomite announces exclusive agreement for the sale of compact microfluidic pressure and vacuum pumps for pneumatic control systems in microfluidics, chemistry and mechatronics August 5th, 2014

Nanomedicine

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Silver Replaced with Copper Nanoparticles to Produce Antibacterial Fabrics August 25th, 2014

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

Announcements

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE