Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Microfluidic Devices Capture and Analyze Single Cancer Cells

Abstract:
One of the grand goals in nanotechnology is to develop a single microfluidic device that integrates all of the components needed to perform polymerase chain reaction (PCR)-based nucleic acid analyses. Experts predict that such a device would enable researchers to develop rapid assays for cancer and other life-threatening diseases while a patient is in the doctor's office.

Microfluidic Devices Capture and Analyze Single Cancer Cells

Bethesda, MD | Posted on January 17th, 2009

A team of investigators at the University of California, Berkeley not only has built such a device, but also has used it to measure changes in gene expression in individual cells following treatment with an agent designed to silence gene expression. The device features four distinct regions that capture single cells, break them apart, amplify the messenger RNA (mRNA) from the cells using reverse-transcriptase PCR, and then analyze and quantify the amplified nucleic acids. The team, led by Richard Mathies, Ph.D., and Carolyn Bertozzi, Ph.D., describes its new device in the journal Proceedings of the National Academy of Sciences of the United States of America.

Four complete devices reside on a glass wafer that is a mere 100 millimeters in diameter. A complete analysis, from cell capture to data output, takes less than 75 minutes. A fully integrated capillary electrophoresis system—a miniaturized version of a standard PCR analysis setup—is incorporated in each device and yields data in a format readily interpretable by anyone with PCR experience. The researchers note that the device should be capable of measuring the expression of 5 to 10 different genes simultaneously.

As a test of the device's capabilities, the researchers analyzed gene expression by Jurkat T-lymphocyte cells that were first treated with a small interfering RNA (siRNA) agent designed to reduce production of a protein known as GAPDH. When the cells were analyzed in bulk, using standard methods, the results showed that siRNA treatment reduced GAPDH expression to 21% of its original value before treatment. However, an analysis of individual cells showed that there were two populations of cells, one of which experienced complete silencing of GAPDH, whereas the other showed moderate gene silencing in which protein expression was cut in half.

One of main limitations of this device is that it uses a biochemical "trick" to capture cells. This trick involves growing the cells of interest in a special growth medium that enables the cell to present a specific chemical group on their cell membranes. This chemical group acts as a tether that can be used to capture the cells inside the microfluidic device. However, research by Weihong Tan, Ph.D., and his colleagues at the University of Florida details a different approach for capturing specific types of cancer cells, which could be used with the integrated mRNA analyzer.

Reporting its work in the journal Analytical Chemistry, Dr. Tan's group describes its use of aptamers to capture cancer cells in a microfluidic device. Aptamers are short, chemically synthesized pieces of DNA or RNA that bind strongly to protein targets, much like antibodies. Using the standard aptamer discovery technology known as SELEX, the researchers are able to quickly identify aptamers that bind to a specific cell type—in this case acute lymphocytic leukemia cells—while ignoring all others. The investigators then immobilized this aptamer on the surface of a microfluidic channel and used it to capture about 80 percent of the target cells in a mixture of cells. The purity of the captured cells was over 97%.

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Integrated microfluidic bioprocessor for single-cell gene expression analysis.”

View abstract - “Enrichment of cancer cells using aptamers immobilized on a microfluidic channel.”

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Microfluidics/Nanofluidics

Dolomite and Lab on a Chip launch Productizing Science® Competition 2015 October 7th, 2014

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE