Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotubes Sniff Out Cancer Agents in Living Cells

Abstract:
A multidisciplinary team at the Massachusetts Institute of Technology (MIT) has developed carbon nanotubes that can be used as sensors for cancer drugs and other DNA-damaging agents inside living cells. The sensors, made of carbon nanotubes wrapped in DNA, can detect chemotherapy drugs such as cisplatin as well as environmental toxins and free radicals that damage DNA.

Nanotubes Sniff Out Cancer Agents in Living Cells

Bethesda, MD | Posted on January 17th, 2009

"We've made a sensor that can be placed in living cells, healthy or malignant, and actually detect several different classes of molecules that damage DNA," said Michael Strano, Ph.D., leader of the research team and a member of the MIT-Harvard Center of Cancer Nanotechnology Excellence. Dr. Strano and his colleagues published their work in the journal Nature Nanotechnology.

Such sensors could be used to monitor chemotherapy patients to ensure that drugs are effectively battling tumors. Many chemotherapy drugs are powerful DNA disruptors and can cause serious side effects, so it is important to make sure that the drugs are reaching their intended targets. The sensor can detect DNA-alkylating agents, a class that includes cisplatin, and oxidizing agents such as hydrogen peroxide and hydroxyl radicals.

"You can figure out not only where the drugs are, but also whether a drug is active or not," said Daniel Heller, a graduate student in chemical engineering and lead author of the paper.

Using the sensors, researchers can monitor living cells over an extended period of time. The sensor can pinpoint the exact location of molecules inside cells, and for one agent, hydrogen peroxide, it can detect a single molecule.

The new technology takes advantage of the fact that carbon nanotubes fluoresce in near-infrared light, whereas human tissue does not, which makes it easier to see the nanotubes light up. In addition, each nanotube's fluorescence depends strongly on events taking place on the surface of the nanotube, such as when molecules bind to the nanotube surface.

Each nanotube is coated with DNA, which binds to DNA-damaging agents present in the cell. That interaction between DNA and the DNA disruptor changes the intensity and/or wavelength of the fluorescent light emitted by the nanotube. The agents produce different signatures that can be used to identify them. Moreover, the investigators developed signal processing methods that separate the signatures of multiple different molecules binding to the nanotubes.

"We can differentiate between different types of molecules depending on how they interact," Dr. Strano said. He added that future studies will use the new nanotube sensors to study the effects of various antioxidants, such as the compounds in green tea, and learn how to more effectively use toxic chemotherapy drugs.

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes.”

Related News Press

News and information

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Nanotubes/Buckyballs

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Nano-bearings on the test bench: Fullerene spheres can be used to slide in the nanoworld October 3rd, 2014

Nanomedicine

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Tuning light to kill deep cancer tumors: Nanoparticles developed at UMass Medical School advance potential clinical application for photodynamic therapy October 15th, 2014

Sensors

Graphenea opens US branch October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Microrobots armed with new force-sensing system to probe cells October 13th, 2014

Discoveries

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanotechnology Improves Quality of Anti-Corrosive Coatings October 17th, 2014

Announcements

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE