Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > A fantastic voyage brought to life

January 15th, 2009

A fantastic voyage brought to life

Abstract:
"Our lab is creating biological nano-machines," says Dr. Peer. "These machines can target specific cells. In fact, we can target any protein that might be causing disease or disorder in the human body. This new invention treats the source, not the symptoms."

Dr. Peer's recent paper reported on the device's ability to target leukocytes (immune cells) in the guts of mice with ulcerative colitis. Calling his new invention a submarine, Dr. Peer has developed a nano-sized carrier which operates like a GPS system to locate and target cells. In the case of Crohn's disease, for example, it will target overactive immune system cells in the gut. In other diseases such as cancer, the submarine can aim for and deliver material to specific cancer cells, leaving the surrounding healthy cells intact.

While other researchers are working in the area of nano-medicine and drug delivery, Dr. Peer's submarines are among the first to combine a drug candidate with a drug delivery system. As the submarines float through the body, they latch onto the target cell and deliver their payload, a drug based on RNAi. This new kind of drug can affect faulty RNA machinery and reprogram cells to operate in normal ways. In essence, RNAi can essentially restore health to diseased cells or cause cells to die (like in the case of cancer cells).

Source:
sciencemode.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project