Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Simply Weird Stuff: Making Supersolids with Ultracold Gas Atoms

Artistic rendition of a supersolid made from two different types of ultracold atoms. The atoms are arranged in a regularly repeating pattern like a solid, but also can move frictionlessly like a superfluid. Yellow shape represents the electrical forces that the atoms feel, which vary in a regular pattern. Correspondingly. the density of the atoms (represented by the thickness of the spheres) also varies in a periodic fashion.

Credit: Ludwig Mathey, NIST/JQI
Artistic rendition of a supersolid made from two different types of ultracold atoms. The atoms are arranged in a regularly repeating pattern like a solid, but also can move frictionlessly like a superfluid. Yellow shape represents the electrical forces that the atoms feel, which vary in a regular pattern. Correspondingly. the density of the atoms (represented by the thickness of the spheres) also varies in a periodic fashion.

Credit: Ludwig Mathey, NIST/JQI

Abstract:
Physicists at the Joint Quantum Institute (JQI) of the National Institute of Standards and Technology (NIST) and the University of Maryland have proposed a recipe for turning ultracold "boson" atoms—the ingredients of Bose-Einstein condensates—into a "supersolid," an exotic state of matter that behaves simultaneously as a solid and a friction-free superfluid. While scientists have found evidence for supersolids in complex liquid helium mixtures, a supersolid formed from such weakly interacting gas atoms would be simpler to understand, potentially providing clues for making a host of new "quantum materials" whose bizarre properties could expand physicists' notions of what is possible with matter.

Simply Weird Stuff: Making Supersolids with Ultracold Gas Atoms

GAITHERSBURG, MD | Posted on January 13th, 2009

First theorized in 1970, a supersolid displays the essential characteristics of a solid, with atoms arranged in regularly repeating patterns like that of a crystal lattice, and of a superfluid, with the particles flowing frictionlessly and without losing any energy. Able to exist only at low temperatures, a supersolid behaves very differently from objects in the everyday world.

"If you add more clothing to a spinning washing machine, you increase the mass of its rim, and the machine needs to exert a greater force to make the wheel reverse direction," explains lead author Ludwig Mathey. "But in a supersolid washing machine, some of the clothes would mysteriously hover in space, staying stationary as the washer spins and making it easier for the wheel to reverse direction. Moreover, these hovering, frictionless clothes would form a predictable pattern—such as frictionless socks alternating with frictionless shirts—just as atoms arrange themselves in a repeating pattern in a crystal."

In 2004, Moses Chan and Eun-Seong Kim of Pennsylvania State University published a groundbreaking experiment on helium at low temperatures and gathered evidence for a supersolid phase. However, the interpretation of their observations has considerable uncertainties due to the complex nature of the particular system used in their experiments.

Now physicists Ludwig Mathey, Ippei Danshita and Charles Clark have identified a technique for making a simpler-to-understand supersolid, using two species of ultracold atoms confined in an optical lattice, a "web of light" that traps atoms in regular positions. In a paper* to be published in Physical Review A, the JQI team identifies conditions under which a cloud of ultracold atoms of two species (such as rubidium and sodium, or two slightly different forms of rubidium) can spontaneously condense into a state in which there is crystalline structure in the relative positions of atoms, e.g. a chain in which the two different types of atoms alternate regularly, but in which the entire cloud exhibits the frictionless, superfluid properties of a Bose-Einstein condensate (BEC). This remains hard to visualize in familiar terms—the accompanying image shows an artist's conception of it—but the team identified clear experimental signatures (essentially photographs of the cloud), which could verify the simultaneous existence of these two seemingly incompatible properties.

The underlying technologies of optical lattices and Bose-Einstein condensation were pioneered at NIST and have sparked a renaissance in atomic physics with applications to NIST's fundamental measurement missions, such as time and frequency standards and improved sensors of magnetic and gravitational forces. The supersolid is an example of a further direction of research in ultracold atomic physics: the design of quantum materials with fundamental properties not previously found in familiar matter.

* L. Mathey, I. Danshita and C. W. Clark, Creating a supersolid in one-dimensional Bose mixtures. Physical Review A. Published as a Rapid Communication on Jan. 12, 2009.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Ben Stein

(301) 975-3097

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Physics

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

The quantum fridge: It all comes down to quantum physics: scientists at TU Wien have analyzed why some gases can be cooled down to extremely low temperatures February 2nd, 2016

Unconventional superconductivity near absolute zero temperature: Quantum critical point could be the reason for high temperature superconductivity February 2nd, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Discoveries

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Announcements

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic