Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Simply Weird Stuff: Making Supersolids with Ultracold Gas Atoms

Artistic rendition of a supersolid made from two different types of ultracold atoms. The atoms are arranged in a regularly repeating pattern like a solid, but also can move frictionlessly like a superfluid. Yellow shape represents the electrical forces that the atoms feel, which vary in a regular pattern. Correspondingly. the density of the atoms (represented by the thickness of the spheres) also varies in a periodic fashion.

Credit: Ludwig Mathey, NIST/JQI
Artistic rendition of a supersolid made from two different types of ultracold atoms. The atoms are arranged in a regularly repeating pattern like a solid, but also can move frictionlessly like a superfluid. Yellow shape represents the electrical forces that the atoms feel, which vary in a regular pattern. Correspondingly. the density of the atoms (represented by the thickness of the spheres) also varies in a periodic fashion.

Credit: Ludwig Mathey, NIST/JQI

Abstract:
Physicists at the Joint Quantum Institute (JQI) of the National Institute of Standards and Technology (NIST) and the University of Maryland have proposed a recipe for turning ultracold "boson" atomsóthe ingredients of Bose-Einstein condensatesóinto a "supersolid," an exotic state of matter that behaves simultaneously as a solid and a friction-free superfluid. While scientists have found evidence for supersolids in complex liquid helium mixtures, a supersolid formed from such weakly interacting gas atoms would be simpler to understand, potentially providing clues for making a host of new "quantum materials" whose bizarre properties could expand physicists' notions of what is possible with matter.

Simply Weird Stuff: Making Supersolids with Ultracold Gas Atoms

GAITHERSBURG, MD | Posted on January 13th, 2009

First theorized in 1970, a supersolid displays the essential characteristics of a solid, with atoms arranged in regularly repeating patterns like that of a crystal lattice, and of a superfluid, with the particles flowing frictionlessly and without losing any energy. Able to exist only at low temperatures, a supersolid behaves very differently from objects in the everyday world.

"If you add more clothing to a spinning washing machine, you increase the mass of its rim, and the machine needs to exert a greater force to make the wheel reverse direction," explains lead author Ludwig Mathey. "But in a supersolid washing machine, some of the clothes would mysteriously hover in space, staying stationary as the washer spins and making it easier for the wheel to reverse direction. Moreover, these hovering, frictionless clothes would form a predictable patternósuch as frictionless socks alternating with frictionless shirtsójust as atoms arrange themselves in a repeating pattern in a crystal."

In 2004, Moses Chan and Eun-Seong Kim of Pennsylvania State University published a groundbreaking experiment on helium at low temperatures and gathered evidence for a supersolid phase. However, the interpretation of their observations has considerable uncertainties due to the complex nature of the particular system used in their experiments.

Now physicists Ludwig Mathey, Ippei Danshita and Charles Clark have identified a technique for making a simpler-to-understand supersolid, using two species of ultracold atoms confined in an optical lattice, a "web of light" that traps atoms in regular positions. In a paper* to be published in Physical Review A, the JQI team identifies conditions under which a cloud of ultracold atoms of two species (such as rubidium and sodium, or two slightly different forms of rubidium) can spontaneously condense into a state in which there is crystalline structure in the relative positions of atoms, e.g. a chain in which the two different types of atoms alternate regularly, but in which the entire cloud exhibits the frictionless, superfluid properties of a Bose-Einstein condensate (BEC). This remains hard to visualize in familiar termsóthe accompanying image shows an artist's conception of itóbut the team identified clear experimental signatures (essentially photographs of the cloud), which could verify the simultaneous existence of these two seemingly incompatible properties.

The underlying technologies of optical lattices and Bose-Einstein condensation were pioneered at NIST and have sparked a renaissance in atomic physics with applications to NIST's fundamental measurement missions, such as time and frequency standards and improved sensors of magnetic and gravitational forces. The supersolid is an example of a further direction of research in ultracold atomic physics: the design of quantum materials with fundamental properties not previously found in familiar matter.

* L. Mathey, I. Danshita and C. W. Clark, Creating a supersolid in one-dimensional Bose mixtures. Physical Review A. Published as a Rapid Communication on Jan. 12, 2009.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Ben Stein

(301) 975-3097

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Discoveries

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Announcements

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE