Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Vistec, CEA/Leti and D2S Join Forces on E-beam Direct Write Solutions for the 45- and 32-nm Nodes

Abstract:
E-beam supplier Vistec, along with semiconductor research group CEA/Leti, and emerging design and software company D2S, today announced a collaboration focused on refining and validating advanced design-for-e-beam (DFEB) solutions for the 45- and 32-nm nodes. Over the next 12 months, CEA/Leti will manufacture test chips using a combination of D2S' advanced DFEB design and software capabilities and the latest high-resolution e-beam direct-write (EbDW) lithography equipment from Vistec. The goal of this collaboration is to print 45- and 32-nm circuits using Vistec Electron Beam's SB3054 system installed at CEA/Leti.

Vistec, CEA/Leti and D2S Join Forces on E-beam Direct Write Solutions for the 45- and 32-nm Nodes

San Jose, CA | Posted on January 13th, 2009

High Speed, Low Cost

Driving the need for this joint effort is the ever-rising cost of semiconductor masks, which is making low-volume production of custom ICs economically infeasible. Using an e-beam tool to directly write patterns onto a wafer has always been the most accurate way to pattern a semiconductor wafer; however, low throughput using a traditional variable shaped beam (VSB) approach has limited its application. By efficiently employing character or cell projection (CP) technology to re-write the throughput rules around EbDW, the DFEB solution virtually eliminates the cost of masks and can speed time to market by shortening the design-to-lithography process flow.

D2S' proprietary DFEB solution encourages and isolates the most commonly recurring patterns of chip designs and translates them into templates on "mini-reticles". A prepared set of templates on a mini-reticle then allows these complex patterns to be replicated in a single shot on a wafer. This is accomplished using Vistec's SB3054 tool utilizing CP technology. By reducing a design's required shot count, this approach improves throughput over VSB while enhancing accuracy.

Solutions for a New Production Paradigm

"Ever increasing mask costs are presenting numerous challenges in the semiconductor industry," said Aki Fujimura, founder and chief executive officer of D2S. "Combining EbDW with CP provides a low-risk, low-cost path to a new production paradigm. Producers of high-value, low-volume devices will be the beneficiaries of this joint effort to validate direct-write-e-beam solutions at leading-edge technology nodes -- thanks in part to our DFEB ecosystem partners, CEA/Leti and Vistec."

Laurent Pain, lithography laboratory manager at CEA/Leti, stated, "DFEB is an innovative, new approach to the old problem of boosting e-beam throughput while enhancing accuracy. We are looking forward to this collaboration to validate accuracy and throughput goals at the 45- and 32-nm nodes using the Vistec SB3054 system in tandem with D2S' advanced DFEB solution."

"We see the integrated CP functionality and DFEB software as a bridge between the high-resolution requirements of advanced R&D and the challenging throughput expectations driven by industrial prototyping applications," said Wolfgang Dorl, general manager at Vistec Electron Beam. "The CP feature is available today from Vistec and was recently installed at CEA/Leti to enable this collaboration and research."

####

About D2S
D2S is empowering an era of new business opportunities for electronic products by making low-volume silicon production cost effective at the 65 nanometer node and below. D2S' advanced design-for-e-beam (DFEB) design and software capabilities maximize existing e-beam technology to virtually eliminate the costs of masks and can speed time to market by shortening the design-to-lithography process flow. Headquartered in San Jose, Calif., the company was founded in 2007.

Vistec Lithography

Vistec Lithography, located in Watervliet, NY, USA develops, manufactures and sells electron-beam lithography equipment based on Gaussian beam technology. Their electron beam systems are world-wide accepted in advanced research laboratories and universities.

Download of all media releases and images from www.vistec-semi.com.

About CEA/Leti

CEA is a government-funded technological research organisation. Drawing on its excellence in fundamental research, its activities cover three main areas: Energy, Information and Health Technologies, and Defence and Security.

Leti, a CEA laboratory located in Grenoble, is one of the main European applied research centers in electronics. More than 85% of its activity is devoted to industrial research with 350 contracts a year.

Since its creation in 1967, Leti has led to the creation of more than 30 start-ups in high-technology. The main areas of activity are micro- and nano-technologies for microelectronics (more Moore, More than Moore and Beyond CMOS), technologies, design and integration of microsystems, photonics and imaging technologies, micro- and nano-technologies for biology and health, communication technologies and nomadic objects.

Leti operates with an annual budget of euro 174 M and employs 1,000 people with, in addition, more than 600 external collaborators (postgraduates, research and corporate partners). Leti has 8,000 meters squared of clean rooms, an equipment portfolio worth euro 200 M and invests more than euro 40 M a year on new equipment. Leti has a dynamic Intellectual Property policy and has filed more than 250 new patent applications in 2008. For more information, visit www.leti.fr

For more information, please click here

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Chip Technology

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Announcements

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Tools

Hiden CATLAB Microreactor System at ARABLAB 2015 | Visit us on Booth 1011 February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Alliances/Partnerships/Distributorships

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

National Space Society and Space Frontier Foundation announce the formation of the Alliance for Space Development February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Silicon Catalyst Announces Partnership With imec to Support Semiconductor Start-Ups February 23rd, 2015

Research partnerships

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

European roadmap for graphene science and technology published February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE