Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Label free sensing with silicon nanowires

Abstract:
Nanoscale electronic devices have the potential to achieve exquisite sensitivity as sensors for the direct detection of molecular interactions, thereby decreasing diagnostics costs and enabling previously impossible sensing in disparate field environments. Semiconducting nanowire-field effect transistors (NW-FETs) hold particular promise, though contemporary nanowire approaches are inadequate for realistic applications.

Label free sensing with silicon nanowires

UK | Posted on January 12th, 2009

As a part of its ongoing efforts to improve the UK sensing innovation by transferring knowledge to businesses, the Micro and Nano Sensors Interest Group (MiNSIG) of the Sensors and Instrumentation KTN is organising a free online seminar titled ‘Label free sensing with silicon nanowires' on 12th February 2009 at 15.00- 16.00 GMT. The speaker of this event is Prof. Mark Reed, the Harold Hodgkinson Chair of Engineering and Applied Science at Yale University, and the Associate Director of the Yale Institute for Nanoscience and Quantum Engineering. . Mark is the author of more than 175 professional publications and 6 books, has given 17 plenary and over 265 invited talks, and holds 25 U.S. and foreign patents. Mark received several awards including the IEEE Pioneer Award in Nanotechnology (2007), Fellow of the American Physical Society (2003), the Fujitsu ISCS Quantum Device Award (2001) and the Kilby Young Innovator Award (1994). His research interests include the investigation of electronic transport in nanoscale, molecular, and mesoscopic systems.

The seminar will discus recent developments in nanowire sensors and a novel sensing approach using complementary metal-oxide-semiconductor (CMOS) technology that has not only achieved unprecedented sensitivity, but simultaneously facilitates system-scale integration of nanosensors for the first time. The advantage of the technology is that it enables a wide range of label-free biochemical and macromolecule sensing applications, including cell type discrimination through the monitoring of live, stimulus-induced cellular response, and specific protein and complementary DNA recognition assays. An important achievement is the introduction of real-time, unlabeled detection capability, allowing for fundamental studies of cellular activation, and specific macromolecule interactions at femtomolar concentrations. The talk will also discuss specific aspects of microfluidic integration and Debye screening along with a demonstration of live cell peptide-specific immunoresponse. This new approach provides a method for creating nanodevices that allows them to integrate directly with microelectronic systems. This novel technology has broad application for low-cost, highly sensitive detection of molecules including biomolecules for medical diagnostics and therapeutics.

The event is free to all, however due to limited space availability, registration is required. To secure the place please send an email to Tiju Joseph, Further information of the event and joining instructions can be obtained by contacting the Sensors & Instrumentation KTN at +44 (0) 20 8943 6594 or by visiting the website:
sensors.globalwatchonline.com/epicentric_portal/site/sensors/menuitem.691fc047589dba54a0f3b5308380e1a0/?mode=0

####

For more information, please click here

Contacts:
Tiju Joseph

+44 (0) 20 8943 6594

Copyright © Sensors & Instrumentation KTN

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Sensors

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Announcements

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Events/Classes

Stretchy supercapacitors power wearable electronics August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Impressive List of Doctors, Scientists Coming to Vail for Scientific Summit: The Second Vail Scientific Summit Convenes the Greatest Minds in Regenerative Medicine and Science August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic