Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers control the assembly of nanobristles into helical clusters

Bristles hugging a polystyrene sphere.

Credit: Courtesy of Aizenberg lab at the Harvard School of Engineering and Applied Sciences
Bristles hugging a polystyrene sphere.

Credit: Courtesy of Aizenberg lab at the Harvard School of Engineering and Applied Sciences

Abstract:
Finding has potential use in energy and information storage, photonics, adhesion, capture and release systems, and chemical mixing

Researchers control the assembly of nanobristles into helical clusters

Cambridge, MA | Posted on January 8th, 2009

From the structure of DNA to nautical rope to distant spiral galaxies, helical forms are as abundant as they are useful in nature and manufacturing alike. Researchers at the Harvard School of Engineering and Applied Sciences (SEAS) have discovered a way to synthesize and control the formation of nanobristles, akin to tiny hairs, into helical clusters and have further demonstrated the fabrication of such highly ordered clusters, built from similar coiled building blocks, over multiple scales and areas.

The finding has potential use in energy and information storage, photonics, adhesion, capture and release systems, and as an enhancement for the mixing and transport of particles. Lead authors Joanna Aizenberg, Gordon McKay Professor of Materials Science at SEAS and the Susan S. and Kenneth L. Wallach Professor at the Radcliffe Institute for Advanced Study, and L Mahadevan, Lola England de Valpine Professor of Applied Mathematics at SEAS, reported the research in the January 9 issue of Science.

"We demonstrated a fascinating phenomenon: How a nanobristle immersed in an evaporating liquid self-assembles into an ordered array of helical bundles. This is akin to the way wet, curly hair clumps together and coils to form dreadlocks—but on a scale 1000 times smaller," said Aizenberg.

To achieve the "clumping" effect, the scientists used an evaporating liquid on a series of upright individual pillars arrayed like stiff threads on a needlepoint canvas. The resulting capillary forces—the wicking action or the ability of one substance to draw another substance into it—caused the individual strands to deform and to adhere to one another like braided hair, forming nanobristles.

"Our development of a simple theory allowed us to further characterize the combination of geometry and material properties that favor the adhesive, coiled self-organization of bundles and enabled us to quantify the conditions for self-assembly into structures with uniform, periodic patterns," said Mahadevan.

By carefully designing the specific geometry of the bristle, the researchers were able to control the twist direction (or handedness) of the wrapping of two or more strands. More broadly, Aizenberg and Mahadevan, who are both core members of the recently established Wyss Institute for Biologically Inspired Engineering at Harvard, expect such work will help further define the emerging science and engineering of functional self-assembly and pattern formation over large spatial scales.

Potential applications of the technique include the ability to store elastic energy and information embodied in adhesive patterns that can be created at will. This has implications for photonics in a similar way to how the chirally-ordered and circularly-polarizing elytral filaments in a beetle define its unique optical properties.

The finding also represents a critical step towards the development of an efficient adhesive or capture and release system for drug delivery and may be used to induce chiral flow patterns to enhance the mixing and transport of various particles at the micron- and submicron sale.

"We have teased apart and replicated a ubiquitous form in nature by introducing greater control over a technique increasingly used in manufacturing while also creating a micro-physical manifestation of the terrifying braids of the mythical Medusa," said Mahadevan.

"Indeed, our helical patterns are so amazingly aesthetic that often we would stop the scientific discussion and argue about mythology, modern dreadlocks, alien creatures, or sculptures," added Aizenberg.

Aizenberg and Mahadevan's co-authors included Boaz Pokroy and Sung H. Kang, both in the Aizenberg Biomimetics Lab at SEAS. The research was supported by the Wyss Institute for Biologically Inspired Engineering at Harvard; the Harvard Materials Research Science and Engineering Center; and the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network initiative.

Note: High-resolution images available upon request.

####

For more information, please click here

Contacts:
Michael Patrick Rutter

617-496-3815

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Chip Technology

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Memory Technology

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Materials/Metamaterials

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Photonics/Optics/Lasers

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project