Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon nanotube 'ink' may lead to thinner, lighter transistors and solar cells

An atomic force microscope image of both metallic and semiconducting carbon nanotubes, before the cycloaddition process of removing the metallic tubes.
An atomic force microscope image of both metallic and semiconducting carbon nanotubes, before the cycloaddition process of removing the metallic tubes.

Abstract:
Using a simple chemical process, scientists at Cornell and DuPont have invented a method of preparing carbon nanotubes for suspension in a semiconducting "ink," which can then be printed into such thin, flexible electronics as transistors and photovoltaic materials.

Carbon nanotube 'ink' may lead to thinner, lighter transistors and solar cells

ITHACA, NY | Posted on January 8th, 2009

The method, which involves treating carbon nanotubes with fluorine-based molecules, is reported in the Jan. 9 issue of the journal Science (Vol. 323 No. 234). The research was jointly led by Graciela B. Blanchet, a research fellow at DuPont, and George Malliaras, Cornell associate professor of materials science and engineering and the Lester B. Knight Director of the Cornell NanoScale Science and Technology Facility. Helen Lu, a research chemist at Dupont, and Mandakini Kanungo, a former Cornell postdoctoral fellow now at Xerox, also worked on the project.

Carbon nanotubes are good candidates for transistors in low-cost, printable electronics, but only after large quantities of them have been converted into semiconductors. When carbon nanotubes are grown in the lab, some are semiconducting but others are metallic, and they are difficult to separate from each other.

This mix is a major drawback in creating transistors from nanotubes, Malliaras said. The Cornell/DuPont team concentrated on a new, inexpensive way to eliminate the metallic tubes, preparing them for such applications as suspension in semiconducting ink for printing.

To do so, the researchers brought fluorine-based molecules into contact with the nanotubes. Through a process called cycloaddition, the fluorine molecules efficiently attacked or converted the metallic nanotubes, leaving the semiconducting tubes alone, and creating a perfect batch of solely semiconducting nanotubes.

"Our work suggests that careful control of the chemical reaction enables the complete conversion of metallic tubes without the degradation of semiconducting tubes," Blanchet said.

The work should lead to exploration of a wide range of devices, such as novel organic photovoltaic structures, Malliaras added.

For the past several years, scientists from Cornell and DuPont have worked together on a variety of projects involving flexible electronics. The research is funded by a grant from the U.S. Air Force for developing transistors from carbon nanotubes.

####

For more information, please click here

Contacts:
Cornell Chronicle:
Anne Ju
(607) 255-9735


Media Contact:
Blaine Friedlander
(607) 254-8093

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Possible Futures

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Chip Technology

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Discoveries

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Energy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Solar/Photovoltaic

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Printing/Lithography/Inkjet/Inks

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

'On-the-fly' 3-D print system prints what you design, as you design it June 1st, 2016

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic