Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > First Science from the Compact Light Source: A miniature synchrotron for your home lab

Differential Phase Contrast Imaging naturally produces three images by analyzing the fringe intensity for each pixel as the second grating of the interferometer is scanned. The average is just the normal X-ray absorption image, the depth of the fringe oscillation yields the dark field image and the phase of the fringe oscillation yields the phase image. The video shows first a bee and then a moth from the recently published paper. The first absorption image fades to the dark field image which then fades to the phase image. Notice that the dark field image is sensitive to the insect’s fiber support structure while the phase image is sensitive to the filaments supporting the insect. The data was recorded on a CCD detector on loan from Rayonix which has 80 micron pixel size.

Credit: Lyncean Technologies, Inc. with images from Bech, M., Bunk, O., David, C., Ruth, R., Rifkin, J., Loewen, R., Feidenhans'l, R. & Pfeiffer, F. (2009). J. Synchrotron Rad. 16, 43-47.
Differential Phase Contrast Imaging naturally produces three images by analyzing the fringe intensity for each pixel as the second grating of the interferometer is scanned. The average is just the normal X-ray absorption image, the depth of the fringe oscillation yields the dark field image and the phase of the fringe oscillation yields the phase image. The video shows first a bee and then a moth from the recently published paper. The first absorption image fades to the dark field image which then fades to the phase image. Notice that the dark field image is sensitive to the insect’s fiber support structure while the phase image is sensitive to the filaments supporting the insect. The data was recorded on a CCD detector on loan from Rayonix which has 80 micron pixel size.

Credit: Lyncean Technologies, Inc. with images from Bech, M., Bunk, O., David, C., Ruth, R., Rifkin, J., Loewen, R., Feidenhans'l, R. & Pfeiffer, F. (2009). J. Synchrotron Rad. 16, 43-47.

Abstract:
In 2004 Lyncean Technologies announced the construction of the Compact Light Source (CLS), a miniature synchrotron which uses inverse Compton scattering to produce high-intensity, tunable, near-monochromatic x-ray beams. The CLS was designed to bring state-of-the-art protein structure determination to the home laboratory—but it has also promised to have a broad impact across the spectrum of x-ray science.

First Science from the Compact Light Source: A miniature synchrotron for your home lab

Palo Alto, CA | Posted on January 8th, 2009

Today, at the 39th Winter Colloquium on the Physics of Quantum Electronics, Ronald Ruth, Ph.D., president of Lyncean Technologies, announced that the CLS has started delivering on this promise by achieving three key milestones using its unique x-ray beam: First scientific publication from the CLS featured by the Journal of Synchrotron Radiation on its January 2009 cover; first micro-tomographic images from the CLS; and first protein crystallography data set from the CLS.

The Compact Light Source prototype effort was funded by the National Institute of General Medical Sciences (NIGMS) Small Business Innovation Research (SBIR) program as an advanced technology related to the NIGMS Protein Structure Initiative (PSI). The CLS technology is based on an electron beam stored in a miniature storage ring colliding repeatedly with an opposing infrared light pulse stored in a high-finesse cavity. Each collision produces x-rays through inverse Compton scattering. The entire x-ray source fits in a 10x25 ft room similar in size to those used for Magnetic Resonance Imaging in medical clinics.

The first scientific publication using the CLS x-ray beam employs a technique called Differential Phase Contrast Imaging (DPCI) developed by Professor Franz Pfeiffer and collaborators at the Paul Scherrer Institute in Switzerland. DPCI uses a pair of micron-scale gratings to create two images, one sensitive to the phase of the x-ray wave front and the other sensitive to the local scattering power. This technique has been primarily developed at x-ray beam lines in large synchrotrons, and it relies on a small point-like x-ray source to achieve the coherence necessary for the fringes. The Compact Light Sources has an x-ray beam that is a perfect match for the technique.

Prof. Pfeiffer explained the motivation for imaging with the CLS x-ray beam, "High-resolution, soft-tissue imaging has been pursued at the large synchrotrons for the past 15 years, but to be useful to the biomedical community, the new methods must be able to use x-ray sources that are laboratory or clinical in scale. Differential Phase Contrast Imaging can use the full intensity of the CLS beam and can take advantage of its tiny source size and moderate divergence to image a field of view in the 10 cm range with very small pixel size. This will first open research and development applications such as small animal imaging, the study of tumor growth models or the development of Alzheimer's plaques in brain samples. Clinical applications might extend from mammography to osteoarthritis."

"We are only just beginning to exploit the benefits of the CLS for DPCI," continued Pfeiffer, "The JSR paper shows results from the very first experiments using the CLS for DPCI. Since then, we have also performed the first computed tomography using the CLS x-ray beam, and we are planning our next round of experiments this spring with higher x-ray energy (20 keV), higher intensity, and finer resolution."

In the second round of the Protein Structure Initiative, further CLS development was included in the Accelerated Technology Center for Gene to 3D Structure (ATCG3D, www.ATCG3D.org) supported by both NIGMS and the National Center for Research Resources (NCRR). "The focus of the CLS development has been towards protein crystallography," said Professor Ruth, "and with the ATCG3D Beta CLS we had the opportunity to improve performance and reliability. We now have the Beta CLS nearly ready for installation and further development."

"Using many of the ATCG3D CLS subsystems together with the prototype CLS", Ruth continued, "we saw our first protein diffraction in November and on our second crystal, we collected a data set with 3 Å resolution. This was made possible by close collaboration with ATCG3D and in particular with Dr. Michael McCormick of the Peter Kuhn and Ray Stevens laboratory at The Scripps Research Institute. After the ATCG3D Beta CLS is commissioned, we will improve performance to make data collection rapid and routine."

Dr. Lance Stewart, director of ATCG3D and President of deCODE biostructures, commented on the imaging results and the first crystallography at the CLS, "The ATCG3D is very pleased to have had the opportunity to help develop the Compact Light Source. I believe the CLS technology will be important for both soft tissue imaging and protein crystallography."

"With the publication of the first scientific results and the collection of the first set of crystallography data using the CLS, the instrument has demonstrated its potential to have a broad impact on biomedical research," said Jeremy M. Berg, Ph.D., director of NIGMS. "The wide availability of an intense, tunable x-ray tool could transform numerous fields of research by improving access to a key resource."

####

About Lyncean Technologies, Inc.
Lyncean Technologies, Inc. is located in Palo Alto, California. It was founded in 2001 by Stanford Professor Ronald Ruth, Jeffrey Rifkin, M.A. and Rod Loewen, Ph.D. The Compact Light Source concept is based on research performed earlier by Prof. Ruth, Dr. Zhirong Huang and Dr. Rod Loewen at Stanford Linear Accelerator Center and Stanford University.

For more information, please click here

Contacts:
Ronald Ruth

650-320-8300

Copyright © Lyncean Technologies, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

VIDEO: Differential Phase Contrast Imaging naturally produces three images by analyzing the fringe intensity for each pixel as the second grating of the interferometer is scanned.

VIDEO: This data for this video were taken by the DPCI collaboration using the Compact Light Source X-ray beam.

39th Winter Colloquium on the Physics of Quantum Electronics

Journal of Synchrotron Radiation January cover

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project