Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > £500,000 project will help digital cameras build a bigger picture from tiny particles

Abstract:
Scientists at the University of Glasgow have received £500,000 funding to investigate ways of improving the quality of digital camera images through the manipulation of tiny particles.

The team, led by Professor David Cumming and Dr Tim Drysdale from the University's department of electronics and electrical engineering, will take advantage of a phenomenon called plasmon resonance in their efforts to create a microchip for cameras and other imaging equipment that will produce sharper, more colourful images.

£500,000 project will help digital cameras build a bigger picture from tiny particles

Glasgow, UK | Posted on January 3rd, 2009

The project is being funded through a £489,234 grant from the Engineering & Physical Sciences Research Council and is supported by Sharp Laboratories Europe and Oxford University.

Plasmon resonance refers to an interaction produced when light waves fall on a metal surface, or in this case, the thin metal film used on microchip image sensors (CMOS - complementary metal-oxide semiconductor) in digital cameras which detect light waves and covert them into digital signals.

When light shines on the metal film, electrons on the surface absorb the energy of the light waves and begin oscillating, or shaking, in groups. The resultant combined waves are called plasmons and they modify the light distribution around the metal. The CMOS then measures the light and assigns it a digital value which is then used to build up the bigger picture.

To take advantage of this process, the team intends to work with the Sharp and Oxford University to create small nanostructures or patterns in the metal film on the CMOS. This in turn will increase the sensitivity of the sensor and result in higher-quality images.

The structures will also enable the plasmon resonators to be Ďtuned' into the same frequency as various colours of light, thereby improving colour discrimination in images. This could offer a cheaper way of filtering different colours of light, reducing the current number of processes currently used to distinguish between different colours.

The technology could also be applied to spectrometers - devices for measuring the wavelengths in light - which are generally used for identifying materials by picking out different light signatures.

Prof. Cumming said: "Digital imaging has come a long way in recent years and this project aims to further improve the ability of digital devices to produce high-quality pictures. This technology has a wide range of potential applications, for example cameras, televisions, spectrometers and medical sensors.

"We'll be using the extensive nanotechnology expertise at the University to manipulate particles on the nanoscale. It involves taking advantage of the properties of electrons to create a whole new optical effect."

The team is currently recruiting two research assistants - a PhD student and a post-doctoral researcher - for the project which is expected to last for three-and-a-half years.

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow
Media Relations Office
44 0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchersí technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Announcements

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchersí technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Alliances/Trade associations/Partnerships/Distributorships

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

French Research Team Helps Extend MRI Detection of Diseases & Lower Health-Care Costs: CEA, INSERM and G2ELab Brings Grenoble Regionís Expertise In Advanced Medicine & Magnetism Applications to H2020 IDentIFY Project June 21st, 2016

Research showing why hierarchy exists will aid the development of artificial intelligence June 13th, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic