Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > £500,000 project will help digital cameras build a bigger picture from tiny particles

Abstract:
Scientists at the University of Glasgow have received £500,000 funding to investigate ways of improving the quality of digital camera images through the manipulation of tiny particles.

The team, led by Professor David Cumming and Dr Tim Drysdale from the University's department of electronics and electrical engineering, will take advantage of a phenomenon called plasmon resonance in their efforts to create a microchip for cameras and other imaging equipment that will produce sharper, more colourful images.

£500,000 project will help digital cameras build a bigger picture from tiny particles

Glasgow, UK | Posted on January 3rd, 2009

The project is being funded through a £489,234 grant from the Engineering & Physical Sciences Research Council and is supported by Sharp Laboratories Europe and Oxford University.

Plasmon resonance refers to an interaction produced when light waves fall on a metal surface, or in this case, the thin metal film used on microchip image sensors (CMOS - complementary metal-oxide semiconductor) in digital cameras which detect light waves and covert them into digital signals.

When light shines on the metal film, electrons on the surface absorb the energy of the light waves and begin oscillating, or shaking, in groups. The resultant combined waves are called plasmons and they modify the light distribution around the metal. The CMOS then measures the light and assigns it a digital value which is then used to build up the bigger picture.

To take advantage of this process, the team intends to work with the Sharp and Oxford University to create small nanostructures or patterns in the metal film on the CMOS. This in turn will increase the sensitivity of the sensor and result in higher-quality images.

The structures will also enable the plasmon resonators to be ‘tuned' into the same frequency as various colours of light, thereby improving colour discrimination in images. This could offer a cheaper way of filtering different colours of light, reducing the current number of processes currently used to distinguish between different colours.

The technology could also be applied to spectrometers - devices for measuring the wavelengths in light - which are generally used for identifying materials by picking out different light signatures.

Prof. Cumming said: "Digital imaging has come a long way in recent years and this project aims to further improve the ability of digital devices to produce high-quality pictures. This technology has a wide range of potential applications, for example cameras, televisions, spectrometers and medical sensors.

"We'll be using the extensive nanotechnology expertise at the University to manipulate particles on the nanoscale. It involves taking advantage of the properties of electrons to create a whole new optical effect."

The team is currently recruiting two research assistants - a PhD student and a post-doctoral researcher - for the project which is expected to last for three-and-a-half years.

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow
Media Relations Office
44 0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Alliances/Trade associations/Partnerships/Distributorships

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic