Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > £500,000 project will help digital cameras build a bigger picture from tiny particles

Abstract:
Scientists at the University of Glasgow have received £500,000 funding to investigate ways of improving the quality of digital camera images through the manipulation of tiny particles.

The team, led by Professor David Cumming and Dr Tim Drysdale from the University's department of electronics and electrical engineering, will take advantage of a phenomenon called plasmon resonance in their efforts to create a microchip for cameras and other imaging equipment that will produce sharper, more colourful images.

£500,000 project will help digital cameras build a bigger picture from tiny particles

Glasgow, UK | Posted on January 3rd, 2009

The project is being funded through a £489,234 grant from the Engineering & Physical Sciences Research Council and is supported by Sharp Laboratories Europe and Oxford University.

Plasmon resonance refers to an interaction produced when light waves fall on a metal surface, or in this case, the thin metal film used on microchip image sensors (CMOS - complementary metal-oxide semiconductor) in digital cameras which detect light waves and covert them into digital signals.

When light shines on the metal film, electrons on the surface absorb the energy of the light waves and begin oscillating, or shaking, in groups. The resultant combined waves are called plasmons and they modify the light distribution around the metal. The CMOS then measures the light and assigns it a digital value which is then used to build up the bigger picture.

To take advantage of this process, the team intends to work with the Sharp and Oxford University to create small nanostructures or patterns in the metal film on the CMOS. This in turn will increase the sensitivity of the sensor and result in higher-quality images.

The structures will also enable the plasmon resonators to be ‘tuned' into the same frequency as various colours of light, thereby improving colour discrimination in images. This could offer a cheaper way of filtering different colours of light, reducing the current number of processes currently used to distinguish between different colours.

The technology could also be applied to spectrometers - devices for measuring the wavelengths in light - which are generally used for identifying materials by picking out different light signatures.

Prof. Cumming said: "Digital imaging has come a long way in recent years and this project aims to further improve the ability of digital devices to produce high-quality pictures. This technology has a wide range of potential applications, for example cameras, televisions, spectrometers and medical sensors.

"We'll be using the extensive nanotechnology expertise at the University to manipulate particles on the nanoscale. It involves taking advantage of the properties of electrons to create a whole new optical effect."

The team is currently recruiting two research assistants - a PhD student and a post-doctoral researcher - for the project which is expected to last for three-and-a-half years.

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow
Media Relations Office
44 0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Announcements

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations April 21st, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

Nano-magnets produce 3-dimensional images: Wide-view 3-dimensional holographic display composed of nano-magnetic pixels April 20th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Leti Extends Collaboration with Qualcomm on CoolCubeTM 3D Integration Technology for High-Density, High-Performance ICs: Collaboration Goals Include Building an Ecosystem To Take the Chip-stacking Technology from Design to Fabrication April 13th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Strem Chemicals and SONA Nanotech Sign Distribution Agreement for the World’s First Gold Nanorods Synthesized without CTAB February 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic