Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > £500,000 project will help digital cameras build a bigger picture from tiny particles

Abstract:
Scientists at the University of Glasgow have received £500,000 funding to investigate ways of improving the quality of digital camera images through the manipulation of tiny particles.

The team, led by Professor David Cumming and Dr Tim Drysdale from the University's department of electronics and electrical engineering, will take advantage of a phenomenon called plasmon resonance in their efforts to create a microchip for cameras and other imaging equipment that will produce sharper, more colourful images.

£500,000 project will help digital cameras build a bigger picture from tiny particles

Glasgow, UK | Posted on January 3rd, 2009

The project is being funded through a £489,234 grant from the Engineering & Physical Sciences Research Council and is supported by Sharp Laboratories Europe and Oxford University.

Plasmon resonance refers to an interaction produced when light waves fall on a metal surface, or in this case, the thin metal film used on microchip image sensors (CMOS - complementary metal-oxide semiconductor) in digital cameras which detect light waves and covert them into digital signals.

When light shines on the metal film, electrons on the surface absorb the energy of the light waves and begin oscillating, or shaking, in groups. The resultant combined waves are called plasmons and they modify the light distribution around the metal. The CMOS then measures the light and assigns it a digital value which is then used to build up the bigger picture.

To take advantage of this process, the team intends to work with the Sharp and Oxford University to create small nanostructures or patterns in the metal film on the CMOS. This in turn will increase the sensitivity of the sensor and result in higher-quality images.

The structures will also enable the plasmon resonators to be ‘tuned' into the same frequency as various colours of light, thereby improving colour discrimination in images. This could offer a cheaper way of filtering different colours of light, reducing the current number of processes currently used to distinguish between different colours.

The technology could also be applied to spectrometers - devices for measuring the wavelengths in light - which are generally used for identifying materials by picking out different light signatures.

Prof. Cumming said: "Digital imaging has come a long way in recent years and this project aims to further improve the ability of digital devices to produce high-quality pictures. This technology has a wide range of potential applications, for example cameras, televisions, spectrometers and medical sensors.

"We'll be using the extensive nanotechnology expertise at the University to manipulate particles on the nanoscale. It involves taking advantage of the properties of electrons to create a whole new optical effect."

The team is currently recruiting two research assistants - a PhD student and a post-doctoral researcher - for the project which is expected to last for three-and-a-half years.

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow
Media Relations Office
44 0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

The European project SVARNISH, a step forward in the food packaging sector June 11th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project