Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > U of T physicists are first to 'squeeze' light to quantum limit

A progression of squeezed triphoton states spiraling outwards.  The quantum uncertainty in the triphotons can be represented as a blob on a sphere that becomes progressively "squeezed".
Image Credit:  Victoria Feistner
A progression of squeezed triphoton states spiraling outwards. The quantum uncertainty in the triphotons can be represented as a blob on a sphere that becomes progressively "squeezed".
Image Credit: Victoria Feistner

Abstract:
A team of University of Toronto physicists have demonstrated a new technique to squeeze light to the fundamental quantum limit, a finding that has potential applications for high-precision measurement, next-generation atomic clocks, novel quantum computing and our most fundamental understanding of the universe.

U of T physicists are first to 'squeeze' light to quantum limit

TORONTO, ON, Canada | Posted on January 3rd, 2009

Krister Shalm, Rob Adamson and Aephraim Steinberg of U of Tīs Department of Physics and Centre for Quantum Information and Quantum Control, publish their findings in the January 1 issue of the prestigious international journal Nature.

"Precise measurement lies at the heart of all experimental science: the more accurately we can measure something the more information we can obtain. In the quantum world, where things get ever-smaller, accuracy of measurement becomes more and more elusive," explains PhD graduate student Krister Shalm.

Light is one of the most precise measuring tools in physics and has been used to probe fundamental questions in science ranging from special relativity to questions concerning quantum gravity. But light has its limits in the world of modern quantum technology.

The smallest particle of light is a photon and it is so small that an ordinary light bulb emits billions of photons in a trillionth of a second.. "Despite the unimaginably effervescent nature of these tiny particles, modern quantum technologies rely on single photons to store and manipulate information. But uncertainty, also known as quantum noise, gets in the way of the information," explains Professor Aephraim Steinberg.

Squeezing is a way to increase certainty in one quantity such as position or speed but it does so at a cost. "If you squeeze the certainty of one property that is of particular interest, the uncertainty of another complementary property inevitably grows," he says.

In the U of T experiment, the physicists combined three separate photons of light together inside an optical fibre, to create a triphoton. "A strange feature of quantum physics is that when several identical photons are combined, as they are in optical fibres such as those used to carry the internet to our homes, they undergo an "identity crisis" and one can no longer tell what an individual photon is doing," Steinberg says. The authors then squeezed the triphotonic state to glean the quantum information that was encoded in the triphotonīs polarization. (Polarization is a property of light which is at the basis of 3D movies, glare-reducing sunglasses, and a coming wave of advanced technologies such as quantum cryptography.)

In all previous work, it was assumed that one could squeeze indefinitely, simply tolerating the growth of uncertainty in the uninteresting direction. "But the world of polarization, like the Earth, is not flat," says Steinberg.

"A state of polarization can be thought of as a small continent floating on a sphere. When we squeezed our triphoton continent, at first all proceeded as in earlier experiments. But when we squeezed sufficiently hard, the continent lengthened so much that it began to "wrap around" the surface of the sphere," he says.

"To take the metaphor further, all previous experiments were confined to such small areas that the sphere, like your home town, looked as though it was flat. This work needed to map the triphoton on a globe, which we represented on a sphere providing an intuitive and easily applicable visualization. In so doing, we showed for the first time that the spherical nature of polarization creates qualitatively different states and places a limit on how much squeezing is possible," says Steinberg.

"Creating this special combined state allows the limits to squeezing to be properly studied," says Rob Adamson. "For the first time, we have demonstrated a technique for generating any desired triphoton state and shown that the spherical nature of polarization states of light has unavoidable consequences. Simply put: to properly visualize quantum states of light, one should draw them on a sphere."

####

For more information, please click here

Contacts:
Aephraim Steinberg

Note: Prof. Steinberg is reachable only by email until January 2.

Rob Adamson

Tel:807-345-7073 (December 28 - January 4)

All of the above scientists are with
the Department of Physics and The
Centre for Quantum Information &
Quantum Control University of Toronto

Kim Luke

Communications Faculty
Arts & Science
Tel: 416-978-4352

Copyright © University of Toronto

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

A fast solidification process makes material crackle February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Quantum Computing

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

New invention revolutionizes heat transport February 1st, 2016

A new quantum approach to big data January 25th, 2016

Discoveries

A fast solidification process makes material crackle February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Announcements

Scientists create laser-activated superconductor February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Quantum nanoscience

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic