Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Northeastern and UMass Lowell Researchers Develop Rapid Assembly Process in Nanoscale

Abstract:
The rapidly advancing field of nanotechnology demands simple and quick fabrication processes in the nanoscale. With more lightweight flexible plastic solar collectors (organic photovoltaics) and flexible plastic electronics, the challenge is to develop fast, large scale and cost-effective nanoscale assembly processes of different polymers to make flexible devices and materials.

Northeastern and UMass Lowell Researchers Develop Rapid Assembly Process in Nanoscale

Boston, MA | Posted on December 23rd, 2008

Previous nanoscale polymer assembly methods used specially synthesized polymers that were not available commercially and required annealing, a process that can take up to 48 hours.

Research conducted at the National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN) by the University of Massachusetts Lowell and Northeastern University led to the development of rapid template-assisted assembly of polymer blends in the nanoscale. The research team created a highly effective process that takes only 30 seconds to complete and does not require annealing.

This study, funded by the NSF, is published online in the journal Advanced Materials.

"The techniques demonstrated in this work can be used in high-rate nanomanufacturing of polymer-based products, from flexible electronics to materials for medical applications," said Joey Mead, Ph.D., co-author of this paper and deputy director of UMass Lowell's CHN. "This is why we say nanomanufacturing is an ‘enabling technology' -- it impacts many fields and could create entirely new economic sectors."

The short assembly times make it possible to fabricate binary-component polymer arrays at high rates, a critical component for commercially relevant and cost effective nanomanufacturing. The research team used nanotemplates to direct the assembly of each single polymer component in a specific location. Most importantly, the team selectively assembled polymer blends to desired sites through a one-step process with high specificity and selectivity.

This novel and versatile approach to creating nanoscale polymeric patterns can be used to generate a variety of complex geometries, including 90-degree bends, T-junctions and square and circle arrays. In addition, these patterns can be made over a large area with high resolution, overcoming the constraint of limited areas and slow rates.

"This approach for preparation of chemically functionalized substrates has the potential for a wide variety of applications, including biosensors, biochips, photonics, nanolithography and electronics," said Ahmed Busnaina, Ph.D., co-author of this paper and director of Northeastern's CHN.

The research was led by professors Joey Mead, Ph.D., Carol Barry, D.Eng., Ming Wei, D.Eng., Jun Lee, D.Eng., and Liang Fang from the University of Massachusetts Lowell and Ahmed Busnaina, Ph.D., Sivasubramanian Somu, Ph.D. and Xugang Xiong from Northeastern.

About the NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing

In the fall of 2004, the National Science Foundation awarded Northeastern University and its partners, the University of Massachusetts Lowell, the University of New Hampshire, Michigan State University and the Museum of Science, a Nanoscale Science and Engineering Center for high-rate Nanomanufacturing with funding of $12.4 million over five years. The Center for high-rate nanomanufacturing is focused on developing tools and processes that will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanoparticles, etc.) and polymer nanostructures. The center nanotemplates are utilized to conduct fast massive directed assembly of nanoscale elements by controlling the forces required to assemble, detach, and transfer nanoelements at high rates and over large areas. The developed nanotemplates and tools will accelerate the creation of highly anticipated commercial products and will enable the creation of an entirely new generation of applications.

####

About Northeastern University
Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university's distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

For more information, please click here

Contacts:
Jenny Eriksen
Northeastern Media Relations
(617) 373-2802

Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Materials/Metamaterials

Chains of nanogold – forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference September 13th, 2016

New material to revolutionize water proofing September 12th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Research partnerships

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Solar/Photovoltaic

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic