Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon nanotubes show promise as 'smart' material for brain repair

Abstract:
EU-funded scientists in Italy and Switzerland have demonstrated that carbon nanotubes improve nerve responsiveness, potentially making them good candidates for the design of 'smart materials' for biomedical applications such as brain repair. The study, published in the journal Nature Nanotechnology, was funded in part by the Sixth Framework Programme (FP6) as part of the NEURONANO ('Towards new generations of neuro-implantable devices: engineering neurons/carbon nanotubes integrated functional units') project.

Carbon nanotubes show promise as 'smart' material for brain repair

Italy and Switzerland | Posted on December 22nd, 2008

NEURONANO was funded with approximately EUR 1.8 million in the Thematic area 'Nanotechnologies and nanosciences' of FP6. The project's main objective was to integrate carbon nanotubes with other technologies to develop biochips that can help repair damaged central nervous system tissues.

Carbon exists in many forms, the best-known of which are diamond and graphite. Recently, much attention has focused on carbon nanotubes, extraordinarily strong cylindrical carbon molecules with unique electrical properties.

In this latest research, scientists looked at the relationship between the electrical properties of carbon nanotubes and the way nerves are excited in the central nervous system. They measured the electrical activity of single nerve cells, used electron microscopy analysis and applied theoretical modelling to see how nanotubes affected nerve response. Their results show that carbon nanotubes actually improve neuron responsiveness.

The carbon nanotubes, the authors explain, form tight contacts with the membranes of nerve cells. This might allow them to create 'electrical shortcuts' between one side of the nerve cell and the other, making messages travel more quickly. A mathematical model proposed by the researchers explains the phenomenon, and shows its consequences.

The results are exciting because they represent significant progress in addressing what Dr Henry Markram of Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland calls the 'three fundamental obstacles to developing reliable neuroprosthetics': creating an interface between nerve tissue and a device; understanding how best to stimulate the neural tissue; and figuring out which nerve signals should be recorded by the device so that it can make an automatic and appropriate decision.

According to Dr Markram, 'The new carbon nanotube-based interface technology discovered, together with state of the art simulations of brain-machine interfaces, is the key to developing all types of neuroprosthetics: sight, sound, smell, motion, vetoing epileptic attacks, spinal bypasses, as well as repairing and even enhancing cognitive functions.'

Dr Michel Giugliano of the EPFL (now at the University of Antwerp in Belgium) said, 'This result is extremely relevant for the emerging field of neuro-engineering and neuroprosthetics.' Dr Giugliano and co-lead-author Dr Laura Ballerini of the University of Trieste in Italy speculate that the nanotubes could be used as a building block for future 'electrical bypass' systems to treat traumatic brain injury, or for novel electrodes that would replace metal parts of deep-brain-stimulation devices currently used to treat Parkinson's disease and severe depression.

Carbon nanotubes have recently been used in the engineering of mechanical memory; nanoscale electric motors; a hydrogen sensor; touch-screens and flexible displays. A radio receiver consisting of a single nanotube was developed in 2007, and in 2008 a sheet of nanotubes was used to operate a loudspeaker. Research into their use in energy storage has also shown interesting results.

According to the authors, the precise mechanisms of the effect of nanotubes on nerve cells are not yet totally clear; however, the findings do indicate that nanotubes might affect neuronal information processing. 'Although simplified,' they conclude, 'these considerations represent the first attempt at linking electrical phenomena in nanomaterials to neuronal excitability and may allow one to predict or engineer the interactions between nanomaterials and neurons'.

####

For more information, please click here

Copyright © Cordis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Discoveries

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Announcements

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Research partnerships

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project