Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon nanotubes show promise as 'smart' material for brain repair

Abstract:
EU-funded scientists in Italy and Switzerland have demonstrated that carbon nanotubes improve nerve responsiveness, potentially making them good candidates for the design of 'smart materials' for biomedical applications such as brain repair. The study, published in the journal Nature Nanotechnology, was funded in part by the Sixth Framework Programme (FP6) as part of the NEURONANO ('Towards new generations of neuro-implantable devices: engineering neurons/carbon nanotubes integrated functional units') project.

Carbon nanotubes show promise as 'smart' material for brain repair

Italy and Switzerland | Posted on December 22nd, 2008

NEURONANO was funded with approximately EUR 1.8 million in the Thematic area 'Nanotechnologies and nanosciences' of FP6. The project's main objective was to integrate carbon nanotubes with other technologies to develop biochips that can help repair damaged central nervous system tissues.

Carbon exists in many forms, the best-known of which are diamond and graphite. Recently, much attention has focused on carbon nanotubes, extraordinarily strong cylindrical carbon molecules with unique electrical properties.

In this latest research, scientists looked at the relationship between the electrical properties of carbon nanotubes and the way nerves are excited in the central nervous system. They measured the electrical activity of single nerve cells, used electron microscopy analysis and applied theoretical modelling to see how nanotubes affected nerve response. Their results show that carbon nanotubes actually improve neuron responsiveness.

The carbon nanotubes, the authors explain, form tight contacts with the membranes of nerve cells. This might allow them to create 'electrical shortcuts' between one side of the nerve cell and the other, making messages travel more quickly. A mathematical model proposed by the researchers explains the phenomenon, and shows its consequences.

The results are exciting because they represent significant progress in addressing what Dr Henry Markram of Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland calls the 'three fundamental obstacles to developing reliable neuroprosthetics': creating an interface between nerve tissue and a device; understanding how best to stimulate the neural tissue; and figuring out which nerve signals should be recorded by the device so that it can make an automatic and appropriate decision.

According to Dr Markram, 'The new carbon nanotube-based interface technology discovered, together with state of the art simulations of brain-machine interfaces, is the key to developing all types of neuroprosthetics: sight, sound, smell, motion, vetoing epileptic attacks, spinal bypasses, as well as repairing and even enhancing cognitive functions.'

Dr Michel Giugliano of the EPFL (now at the University of Antwerp in Belgium) said, 'This result is extremely relevant for the emerging field of neuro-engineering and neuroprosthetics.' Dr Giugliano and co-lead-author Dr Laura Ballerini of the University of Trieste in Italy speculate that the nanotubes could be used as a building block for future 'electrical bypass' systems to treat traumatic brain injury, or for novel electrodes that would replace metal parts of deep-brain-stimulation devices currently used to treat Parkinson's disease and severe depression.

Carbon nanotubes have recently been used in the engineering of mechanical memory; nanoscale electric motors; a hydrogen sensor; touch-screens and flexible displays. A radio receiver consisting of a single nanotube was developed in 2007, and in 2008 a sheet of nanotubes was used to operate a loudspeaker. Research into their use in energy storage has also shown interesting results.

According to the authors, the precise mechanisms of the effect of nanotubes on nerve cells are not yet totally clear; however, the findings do indicate that nanotubes might affect neuronal information processing. 'Although simplified,' they conclude, 'these considerations represent the first attempt at linking electrical phenomena in nanomaterials to neuronal excitability and may allow one to predict or engineer the interactions between nanomaterials and neurons'.

####

For more information, please click here

Copyright © Cordis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Nanomedicine

Stretching the limits on conducting wires July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Albany College of Pharmacy and Health Sciences to Host One Week Symposium on Nanomedicine July 23rd, 2015

Discoveries

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Research partnerships

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project