Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Carbon nanotubes show promise as 'smart' material for brain repair

Abstract:
EU-funded scientists in Italy and Switzerland have demonstrated that carbon nanotubes improve nerve responsiveness, potentially making them good candidates for the design of 'smart materials' for biomedical applications such as brain repair. The study, published in the journal Nature Nanotechnology, was funded in part by the Sixth Framework Programme (FP6) as part of the NEURONANO ('Towards new generations of neuro-implantable devices: engineering neurons/carbon nanotubes integrated functional units') project.

Carbon nanotubes show promise as 'smart' material for brain repair

Italy and Switzerland | Posted on December 22nd, 2008

NEURONANO was funded with approximately EUR 1.8 million in the Thematic area 'Nanotechnologies and nanosciences' of FP6. The project's main objective was to integrate carbon nanotubes with other technologies to develop biochips that can help repair damaged central nervous system tissues.

Carbon exists in many forms, the best-known of which are diamond and graphite. Recently, much attention has focused on carbon nanotubes, extraordinarily strong cylindrical carbon molecules with unique electrical properties.

In this latest research, scientists looked at the relationship between the electrical properties of carbon nanotubes and the way nerves are excited in the central nervous system. They measured the electrical activity of single nerve cells, used electron microscopy analysis and applied theoretical modelling to see how nanotubes affected nerve response. Their results show that carbon nanotubes actually improve neuron responsiveness.

The carbon nanotubes, the authors explain, form tight contacts with the membranes of nerve cells. This might allow them to create 'electrical shortcuts' between one side of the nerve cell and the other, making messages travel more quickly. A mathematical model proposed by the researchers explains the phenomenon, and shows its consequences.

The results are exciting because they represent significant progress in addressing what Dr Henry Markram of Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland calls the 'three fundamental obstacles to developing reliable neuroprosthetics': creating an interface between nerve tissue and a device; understanding how best to stimulate the neural tissue; and figuring out which nerve signals should be recorded by the device so that it can make an automatic and appropriate decision.

According to Dr Markram, 'The new carbon nanotube-based interface technology discovered, together with state of the art simulations of brain-machine interfaces, is the key to developing all types of neuroprosthetics: sight, sound, smell, motion, vetoing epileptic attacks, spinal bypasses, as well as repairing and even enhancing cognitive functions.'

Dr Michel Giugliano of the EPFL (now at the University of Antwerp in Belgium) said, 'This result is extremely relevant for the emerging field of neuro-engineering and neuroprosthetics.' Dr Giugliano and co-lead-author Dr Laura Ballerini of the University of Trieste in Italy speculate that the nanotubes could be used as a building block for future 'electrical bypass' systems to treat traumatic brain injury, or for novel electrodes that would replace metal parts of deep-brain-stimulation devices currently used to treat Parkinson's disease and severe depression.

Carbon nanotubes have recently been used in the engineering of mechanical memory; nanoscale electric motors; a hydrogen sensor; touch-screens and flexible displays. A radio receiver consisting of a single nanotube was developed in 2007, and in 2008 a sheet of nanotubes was used to operate a loudspeaker. Research into their use in energy storage has also shown interesting results.

According to the authors, the precise mechanisms of the effect of nanotubes on nerve cells are not yet totally clear; however, the findings do indicate that nanotubes might affect neuronal information processing. 'Although simplified,' they conclude, 'these considerations represent the first attempt at linking electrical phenomena in nanomaterials to neuronal excitability and may allow one to predict or engineer the interactions between nanomaterials and neurons'.

####

For more information, please click here

Copyright © Cordis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Research partnerships

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE