Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Better Than Phelps: Hot, Golden, Swimming Nanowires Zap Cancer

This image depicts several cells coated with fluorescent dyes making them appear red. Three nanowires – the neon green lines – have successfully attached themselves to the cells. When a low frequency electromagnetic field is applied, the nanowires heat up and destroy the attached cells.
This image depicts several cells coated with fluorescent dyes making them appear red. Three nanowires – the neon green lines – have successfully attached themselves to the cells. When a low frequency electromagnetic field is applied, the nanowires heat up and destroy the attached cells.

Abstract:
Written by Ken Kingery

The next big thing in cancer treatment may be hotter, covered in more gold, and even be a better swimmer than recent Olympic champion Michael Phelps.

Scientists at the University of Idaho are engineering multifunctional and dynamic nanowires coated in gold that swim through the bloodstream and attach to specific cancerous cells. Once there, an electromagnetic field heats the nanowires, which destroys the targeted cells. The research is supported by a new $425,000 grant, part of a multimillion dollar project funded by the Korean government as part of the International Global Collaboration Pioneer Program.

Better Than Phelps: Hot, Golden, Swimming Nanowires Zap Cancer

MOSCOW, ID | Posted on December 18th, 2008

"Cancer is a dangerous enemy because radiation and chemical treatments cause a lot of side effects," said Daniel Choi, associate professor of materials science and engineering at the University of Idaho and leader of the project. "We can't avoid side effects 100 percent, but these nanowires will minimize the damage to healthy cells."

The technology involves many steps requiring lots of continuing research, but each of the basic concepts already have been proven in laboratory tests.

Choi and his team have already created nanowires that can "swim" to their targets and heat up when exposed to low frequency electromagnetic fields, which are not harmful to human body. The next step is to make them biocompatible, meaning safe to introduce to the human body, and able to seek out specific cancer cells.

Choi believes the gold plating will take care of the biocompatibility. If not, he has several polymers in mind that he also believes would work.

As for seeking out specific cancer cells, Choi also is a member of and working with a University of Idaho group called BANTech - an interdisciplinary group that integrates nanomaterials research with cell biology and bioscience research. The group has identified several promising candidates for antibodies with which to coat the nanowires that would seek out and attach to specific cancer cells.

Once the technology has proven itself in the laboratory, it will be tested in live animals, and eventually human beings. Several Korean institutions, which are helping in every phase of research, will take the lead in that project. The institutions are Seoul National University, Korea University and the Korea Institute of Science and Technology.

"Collaborating with Korean institutions has been a wonderful experience full of mutual benefits and great achievements," said Choi. "Multi-institutional, multi-national projects can provide students and researchers with opportunities to engage in cutting-edge investigations within an international research environment, which is very important to advancing science."

####

About University of Idaho
Founded in 1889, the University of Idaho is the state’s flagship higher-education institution and its principal graduate education and research university, bringing insight and innovation to the state, the nation and the world. University researchers attract nearly $100 million in research grants and contracts each year; the University of Idaho is the only institution in the state to earn the prestigious Carnegie Foundation ranking for high research activity. The university’s student population includes first-generation college students and ethnically diverse scholars. Offering more than 150 degree options in 10 colleges, the university combines the strengths of a large university with the intimacy of small learning communities.

For more information, please click here

Contacts:
Ken Kingery
University Communications
(208) 885-9156

Copyright © University of Idaho

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Nanomedicine

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

MEMS Industry Group's 10th Annual Executive Conference Showcases Rapid Innovation in MEMS/Sensors: Emphasizes Spirit of Collaboration, Supporting First Open-Source Algorithm Community, New Standardization Efforts November 10th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE