Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Better Than Phelps: Hot, Golden, Swimming Nanowires Zap Cancer

This image depicts several cells coated with fluorescent dyes making them appear red. Three nanowires – the neon green lines – have successfully attached themselves to the cells. When a low frequency electromagnetic field is applied, the nanowires heat up and destroy the attached cells.
This image depicts several cells coated with fluorescent dyes making them appear red. Three nanowires – the neon green lines – have successfully attached themselves to the cells. When a low frequency electromagnetic field is applied, the nanowires heat up and destroy the attached cells.

Abstract:
Written by Ken Kingery

The next big thing in cancer treatment may be hotter, covered in more gold, and even be a better swimmer than recent Olympic champion Michael Phelps.

Scientists at the University of Idaho are engineering multifunctional and dynamic nanowires coated in gold that swim through the bloodstream and attach to specific cancerous cells. Once there, an electromagnetic field heats the nanowires, which destroys the targeted cells. The research is supported by a new $425,000 grant, part of a multimillion dollar project funded by the Korean government as part of the International Global Collaboration Pioneer Program.

Better Than Phelps: Hot, Golden, Swimming Nanowires Zap Cancer

MOSCOW, ID | Posted on December 18th, 2008

"Cancer is a dangerous enemy because radiation and chemical treatments cause a lot of side effects," said Daniel Choi, associate professor of materials science and engineering at the University of Idaho and leader of the project. "We can't avoid side effects 100 percent, but these nanowires will minimize the damage to healthy cells."

The technology involves many steps requiring lots of continuing research, but each of the basic concepts already have been proven in laboratory tests.

Choi and his team have already created nanowires that can "swim" to their targets and heat up when exposed to low frequency electromagnetic fields, which are not harmful to human body. The next step is to make them biocompatible, meaning safe to introduce to the human body, and able to seek out specific cancer cells.

Choi believes the gold plating will take care of the biocompatibility. If not, he has several polymers in mind that he also believes would work.

As for seeking out specific cancer cells, Choi also is a member of and working with a University of Idaho group called BANTech - an interdisciplinary group that integrates nanomaterials research with cell biology and bioscience research. The group has identified several promising candidates for antibodies with which to coat the nanowires that would seek out and attach to specific cancer cells.

Once the technology has proven itself in the laboratory, it will be tested in live animals, and eventually human beings. Several Korean institutions, which are helping in every phase of research, will take the lead in that project. The institutions are Seoul National University, Korea University and the Korea Institute of Science and Technology.

"Collaborating with Korean institutions has been a wonderful experience full of mutual benefits and great achievements," said Choi. "Multi-institutional, multi-national projects can provide students and researchers with opportunities to engage in cutting-edge investigations within an international research environment, which is very important to advancing science."

####

About University of Idaho
Founded in 1889, the University of Idaho is the state’s flagship higher-education institution and its principal graduate education and research university, bringing insight and innovation to the state, the nation and the world. University researchers attract nearly $100 million in research grants and contracts each year; the University of Idaho is the only institution in the state to earn the prestigious Carnegie Foundation ranking for high research activity. The university’s student population includes first-generation college students and ethnically diverse scholars. Offering more than 150 degree options in 10 colleges, the university combines the strengths of a large university with the intimacy of small learning communities.

For more information, please click here

Contacts:
Ken Kingery
University Communications
(208) 885-9156

Copyright © University of Idaho

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Nanomedicine

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic