Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Oregon theory may help design tomorrow's sustainable polymer

Marina Guenza, a theoretical chemist at the University of Oregon, may have provided the why behind years of unexplained polymer data.

Credit: Photo by Jim Barlow
Marina Guenza, a theoretical chemist at the University of Oregon, may have provided the why behind years of unexplained polymer data.

Credit: Photo by Jim Barlow

Abstract:
Theoretical chemist provides focus to years of unexplained behavior of molecules moving in plastics

Oregon theory may help design tomorrow's sustainable polymer

Eugene, OR | Posted on December 13th, 2008

Tomorrow's specialty plastics may be produced more precisely and cheaply thanks to the apparently tight merger of a theory by a University of Oregon chemist and years of unexplained data from real world experiments involving polymers in Europe.

The work, which researchers believe may lead to a new class of materials, is described in a paper appearing in the Dec. 18 issue of the Journal of Physical Chemistry B (online Dec. 11). The findings eventually could prove useful in the fields of engineering, nanotechnology, renewable energy and, potentially, medicine, because proteins, DNA, RNA and other large molecules within cells may well move in the same way as those in plastics.

Traditional theory behind the processing of plastic materials since the 1960s has focused on the movement of individual macromolecules as they move by one another. Materials researchers, under this approach, end up with poorly understood products and unexplained data. The new theory of cooperative motion in liquids of polymers successfully explains these observations by considering the coordinated motion of macromolecules with their surrounding neighbors. The end result could remove guesswork and the costly, time-consuming testing of thousands of samples at various stages of production.

"The level of agreement between the data and the theory is remarkable," said Marina G. Guenza, a professor of theoretical physical chemistry at the UO. "We are making the connection between the chemistry of molecules and how they behave. It is really fundamental science. Our findings are exciting for experimentalists because we can see phenomena that they cannot understand. This theory is now explaining what is happening inside their samples. They are no longer dealing with just a set of data; our theory provides a picture of what is happening."

Guenza simplifies her mathematics-heavy theory -- built on Langevin equations that describe the movement of particles in liquid or gas -- to watching students disembark from a crowded bus. Any one student wanting to exit is stuck in place -- or meanders randomly in available spaces -- until other students begin moving toward the exit. As students organize into a group they become coordinated and speed their departure.

The theory addresses the often-seen subdiffusive behavior of molecules as they begin to form a glass under processing -- explaining why molecules slow and freeze into disorganized structures rather than ordering into a crystal, Guenza said. "We would really like to be able to control the properties of the material so that we can tailor the synthesis to achieve exact results."

The theory was put to the test under a variety of scenarios in labs in Germany, France and Switzerland after German plastics researcher Dieter Richter of the Max Planck Institute for Solid State Research, a co-author on the paper, approached Guenza after a conference session and said he had unexplained data that might be explained by Guenza's theory. The unexplained data and Guenza's theory merged under examination, which included the use of neutron spin-echo spectroscopy, a high-energy resolution-scattering technique.

"If you look at just one polymer, as is the case under conventional theory, you don't see any anomalous motion," said Guenza, whose research is funded by the National Science Foundation and the Petroleum Research Fund. "You don't see slowing one molecule alternating between slow and fast motion. Only if you treat the dynamics of a group of molecules together can you predict anomalous behaviors. That's what my theory can give you."

The theory now is being applied to other experiments to test its application to other anomalies, said Guenza, who is a member of three UO interdisciplinary institutes: the Institute of Theoretical Science; the Materials Science Institute and the Institute of Molecular Biology.

Co-authors of the paper with Guenza and Richter were Richter's colleagues M. Zamponi, A. Wischnewski, M. Monkenbusch and L. Willner, and researchers P. Falus and B. Farago, both of the Institut Laue-Langevin, a leading international neutron research center in Grenoble, France.

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the U.S. and Canada. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Contacts:
Source:
Marina Guenza
associate professor
department of chemistry
541-346-2877


Jim Barlow

541-346-3481

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Guenza faculty Web page

department of chemistry

Related News Press

Chemistry

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Discoveries

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Materials/Metamaterials

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE