Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > An attractive match: The search for improved ‘multiferroic’ materials may benefit from a new discovery in an iron-based oxide compound

Figure 1: Multiferroic coupling in DyFeO3. In the absence of an external magnetic field, no net electric polarization (yellow areas) occurs: overall the electric polarization averages out. In the presence of a magnetic field H the Fe atoms rearrange their magnetic orientation M, leading to a net electric polarization P.
Figure 1: Multiferroic coupling in DyFeO3. In the absence of an external magnetic field, no net electric polarization (yellow areas) occurs: overall the electric polarization averages out. In the presence of a magnetic field H the Fe atoms rearrange their magnetic orientation M, leading to a net electric polarization P.

Abstract:
Materials known as ‘multiferroics' hold great promise as memory storage devices owing to coupling between their magnetic and electric properties. Alas, in the multiferroic materials known to date, this coupling typically is very weak and limited to low temperatures, hampering their uptake in commercial applications. Now, researchers from the RIKEN Advanced Science Institute, Wako, in collaboration with colleagues from the Japan Science and Technology Agency, the University of Tokyo and Tohoku University, have revealed strong multiferroic coupling in the oxide compound DyFeO3.

An attractive match: The search for improved ‘multiferroic’ materials may benefit from a new discovery in an iron-based oxide compound

Japan | Posted on December 5th, 2008

In multiferroic compounds ferromagnetism is coupled with ferroelectricity, a phenomenon where electric charges are separated in a material, such that an internal electric polarization is created. This coupling can be used for sensing applications, but also has potential in memory devices where data is typically stored as magnetic information and read out electronically.

Recently, some oxides of manganese, iron as well as others have been shown to possess strong coupling, but ferroelectricity in these materials is rather weak and only the electrical polarization can be switched by a magnetic field, and not vice versa—a showstopper for many applications. "Our goal is to find materials that show a full coupling between ferromagnetism and electric polarization, hopefully at room temperature," says Yusuke Tokunaga, outlining the team's research strategy.

As reported in Physical Review Letters1, the researchers have demonstrated that DyFeO3 shows large ferroelectric polarization combined with a strong multiferroic coupling. They found the origin of this behavior is the layered structure alternating between the dysprosium (Dy) and iron (Fe) layers (Fig. 1), where the Fe atoms attract Dy atoms through their antiparallel magnetic orientation. In a zero magnetic field, the antiparallel pairs of Dy and Fe atoms cancel out the overall electric polarization.

Under the influence of a sufficiently strong magnetic field, however, the magnetic orientation of the Fe atoms rearranges slightly, which then leads to an electric polarization. As the electric polarization is a direct consequence of the magnetic structure, the multiferroic coupling is very strong—about two orders of magnitude larger than that of most other multiferroic materials.

Unfortunately, temperatures below -269 °C remain a necessity for the observation of this effect. Furthermore, the magnetic field required for the realignment of the magnetic orientation of the Fe atoms is relatively high. Nevertheless, Tokunaga is convinced that DyFeO3 represents a promising blueprint: "We believe DyFeO3 will serve as a template for materials with a large multiferroic coupling, even at higher temperatures."
Reference

1. Tokunaga, Y., Iguchi, S., Arima, T. & Tokura, Y. Magnetic-field-induced ferroelectric state in DyFeO3. Physical Review Letters 101, 097205 (2008).

The corresponding author for this highlight is based at the RIKEN Exploratory Materials Team

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Chip Technology

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Memory Technology

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Smallest hard disk to date writes information atom by atom July 20th, 2016

Discoveries

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Announcements

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic