Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Spinning into the future of data storage

Abstract:
Scientists from Queen Mary, University of London have improved their understanding of the inner workings of our computers and mp3 players, thanks to an exciting new field of research called 'organic spintronics'.

Dr Alan Drew from Queen Mary's Department of Physics and the University of Freiburg, Switzerland, along with colleagues from the Paul Scherrer Institute (PSI)*, Switzerland, has become the first to measure how the magnetic polarisation is lost in a device similar to a hard drive 'read-head' found in every computer produced in the last ten years.

Spinning into the future of data storage

London, UK | Posted on November 25th, 2008

Computers and mp3 players have become increasingly efficient at information storage thanks to an effect that physicists call 'giant magnetoresistance'; this allows scientists to produce electronic components which are very sensitive to external magnetic fields, known as magnetic read-heads. These read-heads allow magnetically-encoded data to be very densely packed, resulting in very small hard drives which can store more than 100 CDs worth of data in a device the size of half a cigarette box.

Unlike most electronic components, where the electron's intrinsic electric field or charge is used to carry a signal, magnetic read-heads use the electron's intrinsic magnetic field - known as their 'spin' - to carry information. Spinvalves are made up of at least three layers, two magnetic layers separated by a non-magnetic layer. Dr Drew and his team wanted to investigate how spins travel across the middle of these three layers, in the hope of improving future generations of data storage.

His findings contribute significantly to the fundamental understanding of spintronic devices, and will allow new concepts to develop and aid in the discovery of novel devices and applications, as Dr Drew explains: "Spintronics promise low-power circuits, possibly at the quantum level, and the possibility of combining communication, memory and logic on the same chip. The efficient transfer of spin in these devices remains one of the most difficult challenges facing physicists. One way of improving the efficiency of these devices could be to change the materials they are made from, but currently we are unable to predict what effects the different materials will have. Dr Drew's measurements hope to address this.

One particularly exciting part of this research is that a new combination of materials was used to make the device. Dr Drew continues "When devices are made from organic materials, which have low manufacturing costs and are very flexible, the magnetic information can be preserved for extremely long times - over a million times longer than many materials used in today's technology. These new materials have the potential to create an entirely new generation of spin-enabled devices."

Writing in the journal Nature Materials, Dr Drew explains how the researchers used muons, elementary particles that act like tiny magnets, to measure the magnetic field within the device. As Dr Morenzoni from PSI explains, "The muons have a high energy and must be slowed down before they can be used in the experiment and the equipment we used to do this is unique - PSI is the only source of 'slow' muons in the world, and the only equipment that can measure depth resolved magnetism."

In the long-run, experiments such as this will help understand the fundamental operation of spintronics and hard drive read-heads, and will help to show engineers how they can optimise the heads, and improve computer storage, vital to the next generation of technology.

####

For more information, please click here

Contacts:
Sian Halkyard

44 07-970-096-175

Copyright © Queen Mary, University of London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Spintronics

New options for spintronic devices: Switching magnetism between 1 and 0 with low voltage near room temperature May 18th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Memory Technology

Nano memory cell can mimic the brain’s long-term memory May 14th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project