Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spinning into the future of data storage

Abstract:
Scientists from Queen Mary, University of London have improved their understanding of the inner workings of our computers and mp3 players, thanks to an exciting new field of research called 'organic spintronics'.

Dr Alan Drew from Queen Mary's Department of Physics and the University of Freiburg, Switzerland, along with colleagues from the Paul Scherrer Institute (PSI)*, Switzerland, has become the first to measure how the magnetic polarisation is lost in a device similar to a hard drive 'read-head' found in every computer produced in the last ten years.

Spinning into the future of data storage

London, UK | Posted on November 25th, 2008

Computers and mp3 players have become increasingly efficient at information storage thanks to an effect that physicists call 'giant magnetoresistance'; this allows scientists to produce electronic components which are very sensitive to external magnetic fields, known as magnetic read-heads. These read-heads allow magnetically-encoded data to be very densely packed, resulting in very small hard drives which can store more than 100 CDs worth of data in a device the size of half a cigarette box.

Unlike most electronic components, where the electron's intrinsic electric field or charge is used to carry a signal, magnetic read-heads use the electron's intrinsic magnetic field - known as their 'spin' - to carry information. Spinvalves are made up of at least three layers, two magnetic layers separated by a non-magnetic layer. Dr Drew and his team wanted to investigate how spins travel across the middle of these three layers, in the hope of improving future generations of data storage.

His findings contribute significantly to the fundamental understanding of spintronic devices, and will allow new concepts to develop and aid in the discovery of novel devices and applications, as Dr Drew explains: "Spintronics promise low-power circuits, possibly at the quantum level, and the possibility of combining communication, memory and logic on the same chip. The efficient transfer of spin in these devices remains one of the most difficult challenges facing physicists. One way of improving the efficiency of these devices could be to change the materials they are made from, but currently we are unable to predict what effects the different materials will have. Dr Drew's measurements hope to address this.

One particularly exciting part of this research is that a new combination of materials was used to make the device. Dr Drew continues "When devices are made from organic materials, which have low manufacturing costs and are very flexible, the magnetic information can be preserved for extremely long times - over a million times longer than many materials used in today's technology. These new materials have the potential to create an entirely new generation of spin-enabled devices."

Writing in the journal Nature Materials, Dr Drew explains how the researchers used muons, elementary particles that act like tiny magnets, to measure the magnetic field within the device. As Dr Morenzoni from PSI explains, "The muons have a high energy and must be slowed down before they can be used in the experiment and the equipment we used to do this is unique - PSI is the only source of 'slow' muons in the world, and the only equipment that can measure depth resolved magnetism."

In the long-run, experiments such as this will help understand the fundamental operation of spintronics and hard drive read-heads, and will help to show engineers how they can optimise the heads, and improve computer storage, vital to the next generation of technology.

####

For more information, please click here

Contacts:
Sian Halkyard

44 07-970-096-175

Copyright © Queen Mary, University of London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Spintronics

Making spintronic neurons sing in unison November 18th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

A new spin on superconductivity: Harvard physicists pass spin information through a superconductor October 16th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Discoveries

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project