Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Molecular memory a game-changer: James Tour’s graphene device may make massive storage practical

JAMES TOUR
JAMES TOUR

Abstract:
Talk about a lucky break.

A team at Rice University has figured out that a strip of graphite only 10 atoms thick can be broken with a jolt of electric current -- and repaired with another. Over and over.

That's called a switch, and it could start a revolution in data storage as part of Professor James Tour's quest to bring molecular computing to everyday devices. Think about a handheld device that can hold every movie you want to see -- along with all the others you're likely to see -- and you'll get a taste of what Tour's new type of solid-state storage could achieve.

Molecular memory a game-changer: James Tour’s graphene device may make massive storage practical

Houston, TX | Posted on November 22nd, 2008

The research is available online in Nature Materials. In the paper, Tour and postdoctoral researchers Yubao Li and Alexander Sinitskii describe a memory device that takes advantage of the conducting properties of graphene. Tour said such a device would have all kinds of advantages over both today's state-of-the-art flash memory and other up-and-coming technologies.

For starters, it would increase the amount of storage in a two-dimensional array by a factor of five. The individual bits could be made smaller than 10 nanometers, compared with the 45-nanometer circuitry in today's flash memory chips, and the new switches can be controlled by two terminals instead of three, as in current chips.

Addressing each bit with two wires instead of three is key, because simplifying chip architecture makes three-dimensional memory practical. Graphene arrays can be stacked, multiplying a chip's capacity with every layer, said Tour, Rice's Chao Professor of Chemistry as well as a professor of mechanical engineering and materials science and of computer science.

Even better, being essentially a mechanical device, such chips will consume virtually no power while keeping data intact -- much the same way today's e-book readers keep the image of a page visible even when the power is off.

What distinguishes graphene from other next-generation memories is the on-off power ratio -- the amount of juice a circuit holds when it's on, as opposed to off. "It's huge -- a million-to-one," said Tour. "Phase-change memory, the other thing the industry is considering, runs at 10-to-1. That means the ‘off' state holds, say, one-tenth the amount of current than the ‘on' state."

Electrical current tends to leak from an "off" that's holding a charge. "That means in a 10-by-10 grid, 10 ‘offs' would leak enough to look like they were ‘on.' With our method, it would take a million ‘offs' in a line to look like ‘on,'' he said. "So this is big. It allows us to make a much larger array."

While generating little heat itself, graphene memory seems impervious to a wide temperature range, having been tested from minus 75 to more than 200 degrees Celsius with no discernable effect, Tour said. "Below that, it seems to stick. After all, it's a mechanical motion, and minus 75 C is pretty cold."

That temperature range allows graphene memory to work in close proximity to hot processors. Better still, tests show it to be impervious to radiation, making it suitable for extreme environments. If you're headed to Mars in a couple of decades, this is what you'll want.

Tour said the new switches are also fast; in fact, they react faster than his lab's current testing systems can measure. And they're robust. "We've tested it in the lab 20,000 times with no degradation," said Tour. "Its lifetime is going to be huge, much better than flash memory."

Best of all, the raw material is far from exotic. Graphene is a form of carbon. In a clump it's called graphite, which you spread on paper every time you use a pencil.

The technology has drawn serious interest from industry, said Tour, who's now working on manufacturing techniques. He said it's possible to deposit a layer of graphene on silicon or another substrate by chemical vapor deposition. "Typically, graphene is very hard to think about fabricating commercially," he said, "but this can be done very easily by deposition. The same types of processes used right now can be used to grow this type of graphene in place."

Tour has no illusions about what supports the market for memory. "What really drives technology is entertainment, the big-market stuff," he said. "Cameras, games, cell phones … it's not like somebody's saying, ‘Let's make better memory for science.' It's for massive consumer use.

"I'm not very good at making predictions, but someone at Intel once told me that from the time a technology is successfully tested in the lab, it takes about eight years until it's on the market."

Eight years isn't very long to wait for a handheld device that could hold all those movies and so much more. But Tour's new -- and successfully tested -- technology might make it possible.

"This shows a lot of promise," he said, "in spite of the many obstacles to development that are always on the way to a sellable product."

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
Associate Director /Science Editor
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project