Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoparticle Targets Melanoma With siRNA

Abstract:
Research has shown that a particular receptor for the blood protein thrombin is overexpressed by highly metastatic melanoma cells. When activated, this receptor triggers a wide range of biochemical changes that increase the metastatic activity of melanoma cells. To prevent those biochemical changes from occurring, a team of investigators at The University of Texas M.D. Anderson Cancer Center has developed a small interfering RNA (siRNA) agent designed to prevent melanoma cells from making this receptor, which is known as PAR-1, and used a lipid-based nanoparticle to deliver this agent to melanoma cells.

Nanoparticle Targets Melanoma With siRNA

Bethesda, MD | Posted on November 20th, 2008

Reporting its findings in the journal Cancer Research, a team of investigators led by Menashe Bar-Eli, Ph.D., Anil Sood, M.D., and Gabriel Lopez-Berestein, M.D., describes its work in designing a neutral liposome nanoparticle to carry its siRNA agent to melanoma cells. Unlike viruses and positively charged liposomes that other investigators have used to deliver siRNA in animal models, the investigators reasoned that neutral liposomes would produce far few adverse reactions while escaping elimination from the body by macrophages.

Using this formulation to treat mice with melanoma, the researchers demonstrated that the nanoparticle was taken up by the tumors and that PAR-1 production dropped dramatically. As a result, twice-weekly injections of this formulation significantly inhibited melanoma growth and dramatically reduced the incidence of metastasis as measured by the number of metastatic lesions in the animals' lungs. The researchers also noted that the PAR-1 siRNA was able to significantly reduce the amount of tumor-triggered angiogenesis in the treated animals.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA.”

Related News Press

News and information

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Discoveries

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Announcements

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE