Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 'Enlightened' atoms stage nano-riot againsts uniformity: Harnessing this behavior could lead to cooler computer chips, better bio-sensors

Alexander Kaplan, professor of electrical and computer engineering, right, and Sergei Volkov, left, a postdoctoral fellow in Kaplan’s lab at The Johns Hopkins University.

Credit: Will Kirk/JHU
Alexander Kaplan, professor of electrical and computer engineering, right, and Sergei Volkov, left, a postdoctoral fellow in Kaplan’s lab at The Johns Hopkins University.

Credit: Will Kirk/JHU

Abstract:
When atoms in a crystal are struck by laser light, their electrons, excited by the light, typically begin moving back and forth together in a regular pattern, resembling nanoscale soldiers marching in a lockstep formation. But according to a new theory developed by Johns Hopkins researchers, under the right conditions these atoms will rebel against uniformity. Their electrons will begin moving apart and then joining together again repeatedly like lively swing partners on a dance floor.

'Enlightened' atoms stage nano-riot againsts uniformity: Harnessing this behavior could lead to cooler computer chips, better bio-sensors

Baltimore, MD | Posted on November 18th, 2008

Moreover, the researchers say, this atomic freestyle dancing can be controlled, paving the way for tiny computer components that emit less heat and new sensors to detect bio-hazards and medical conditions.

"By choosing particular atoms in the proper configuration and directing the right laser light at them, we could control the behavior of these 'nano-dancers,'" said Alexander E. Kaplan, a professor in the Department of Electrical and Computer Engineering in Johns Hopkins' Whiting School of Engineering. "The essential thing is, these are completely designable atomic structures."

Kaplan and Sergei N. Volkov, a postdoctoral fellow in his lab, described this phenomenon in a paper published recently in the journal Physical Review Letters. The next step is for other researchers to conduct lab experiments in an effort to validate the theory and predictions advanced by Kaplan and Volkov.

Kaplan, an internationally renowned nonlinear optics expert who studies how matter interacts with strong light, said his and Volkov's "nano-riot" idea runs counter to a widely accepted concept. For decades, Kaplan said, scientists have adhered to the Lorentz-Lorenz theory, which asserts that the atomic electrons in a crystal, exposed to a laser beam, will move back and forth in tandem in a uniform way under any conditions.

"But we've concluded that under certain circumstances, the nearest atoms will behave much differently," he said. "Their electrons will move violently apart and come back together again, staging a sort of 'nano-riot.'"

For this to happen, Kaplan said, several critical conditions must exist. First, the system must be very small, typically involving no more than a few hundred atoms, and the atoms must be arranged in a one-dimensional or two-dimensional configuration. The atoms must be grouped in a sufficiently close concentration; interestingly, though, this arrangement may allow more space between atoms than exists in a typical crystal. Also, the frequency of the laser driving the atoms must be closely tuned to one of the specific frequencies of the atomic electrons -- the so-called atomic resonance -- in the way that a radio receiver might be tuned to a particular station.

When these critical conditions are met, the interacting excited atomic electrons get strongly "coupled," and their motion is affected by one another. The atomic dance partners begin to match or counter-match the motion of each other, while still being driven by the laser's "music."

When this occurs, the dancing atomic electrons form waves of collective motion. Kaplan calls these waves "locsitons," based on the words "local" and "exciton," the latter referring to a physics concept. Within the atomic systems envisioned by Kaplan and Volkov, these locsiton waves are strongly affected by the boundaries of these structures or any irregularities, such as holes. The presence of these boundaries results in size-related resonances, or highly excited motion at certain frequencies, resembling those of a violin string fixed at two end-points. In this case, the string's end-points would be the boundaries of the group of atoms. A smooth violin string produces mostly a main tone, and nearby points of the string move in unison. But an atomic array more closely resembles a chain of connected beads, and with the right laser tuning, the neighboring beads, or atomic electrons, can oscillate counter to each other.

"Fortunately, once this atomic structure is built, the 'dancing style' of the atoms can be controlled by the laser tuning," Kaplan said. "Furthermore, if the laser intensity is sufficient, we believe the atoms in this lattice will engage in so-called nonlinear behavior. That means they can be made to behave like switches in a computer. They will act like a computer's memory or logic components, assuming the positions of either 1 or 0, depending on the initial conditions."

Computer makers, trying to produce ever smaller metallic or semiconductor components, have run into problems related to the excessive release of heat. However, the nanoscale switch envisioned by Kaplan would be a dielectric, meaning it would involve no exchange of free electrons in the structure. Because of this, the proposed components would generate far less heat.

If their theory is confirmed, the Johns Hopkins researchers foresee other applications for these nanoscale atomic systems. The tiny lattices, they say, could be designed so that when a specific foreign bio-molecule enters a system, the atomic electron 'dancing' would stop. Because of this characteristic, they said, the system could be designed to trigger an alarm signal whenever a bio-hazard or perhaps a cancer cell was detected.

The research by Kaplan and Volkov was supported by a grant from the Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
Suite 540, 901 S. Bond St.
Baltimore, Maryland 21231
Phil Sneiderman

443-287-9960

Copyright © Johns Hopkins University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Alexander Kaplan's Web Site

Johns Hopkins Department of Electrical and Computer Engineering

Related News Press

News and information

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Sensors

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Discoveries

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

Announcements

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE