Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Self-propelled microbots navigate through blood vessels

October 31st, 2008

Self-propelled microbots navigate through blood vessels

Abstract:
The 1966 science-fiction movie Fantastic Voyage famously imagined using a tiny ship to combat disease inside the body. With the advent of nanotechnology, researchers are inching closer to creating something almost as fantastic. A microscopic device that could swim through the bloodstream and directly target the site of disease, such as a tumor, could offer radical new treatments. To get to a tumor, however, such a device would have to be small and agile enough to navigate through a labyrinth of tiny blood vessels, some far thinner than a human hair.

Researchers at the École Polytechnique de Montréal, in Canada, led by professor of computer engineering Sylvain Martel, have coupled live, swimming bacteria to microscopic beads to develop a self-propelling device, dubbed a nanobot. While other scientists have previously attached bacteria to microscopic particles to take advantage of their natural propelling motion, Martel's team is the first to show that such hybrids can be steered through the body using magnetic resonance imaging (MRI).

To do this, Martel used bacteria that naturally contain magnetic particles. In nature, these particles help the bacteria navigate toward deeper water, away from oxygen. "Those nanoparticles form a chain a bit like a magnetic compass needle," says Martel. But by changing the surrounding magnetic field using an extended set-up coupled to an MRI machine, Martel and his colleagues were able to make the bacteria propel themselves in any direction they wanted.

Source:
technologyreview.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Nanomedicine

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Discoveries

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic