Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers find new chemical key that could unlock hundreds of new antibiotics

Abstract:
Chemistry researchers at The University of Warwick and the John Innes Centre, have found a novel signalling molecule that could be a key that will open up hundreds of new antibiotics unlocking them from the DNA of the Streptomyces family of bacteria.

Researchers find new chemical key that could unlock hundreds of new antibiotics

UK | Posted on October 29th, 2008

With bacterial resistance growing researchers are keen to uncover as many new antibiotics as possible. Some of the Streptomyces bacteria are already used industrially to produce current antibiotics and researchers have developed approaches to find and exploit new pathways for antibiotic production in the genome of the Streptomyces family. For many years it was thought that the relatively unstable butyrolactone compounds represented by "A-factor" were the only real signal for stimulating such pathways of possible antibiotic production but the Warwick and John Innes teams have now found a much more stable group of compounds that may have the potential to produce at least one new antibiotic compound from up to 50% of the 1000 or so known Streptomyces family of bacteria.

Colonies of bacteria such as Streptomyces naturally make antibiotics as a defence mechanism when those colonies are under stress and thus more susceptible to attack from other bacteria. The colonies need to produce a compound to spread a signal across the colony to start producing their natural antibiotic weapons.

The amounts of such signalling material produced are incredibly small. Only micrograms of these compounds can be isolated by Chemists and usually the available instrumentation needs at least milligrams of material to make a useful analysis. However the Warwick team was able to make use of the University of Warwick's 700 MHz NMR machine to get a close look at just micrograms of 5 new possible signalling compounds identified as 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (or AHFCAs).

The researchers, led by Dr Christophe Corre, and Professor Greg Challis from the University of Warwick's Department of Chemistry were able to combine their new insight into these compounds with the relatively new full genetic sequences now available of some Streptomyces bacteria. They became convinced that the AHFCA group of compounds could play a role in stimulating the production of known and novel antibiotics. When they added AHFCAs to Streptomyces coelicolor W81 they were proved correct as it stimulated the production of methylenomycin antibiotics.

While the methylenomycins were already known as antibiotics, the researchers think it likely that novel pathways for antibiotic production are also under the control of AHFCAs. The AHFCAs should be relatively easy to make in significant quantity in a lab and could be used as a new tool for discovery of antibiotics. The researchers are now seeking funding to explore the AHFCAs and develop a novel approach for drug discovery. Introducing a variety of AHFCAs to various Streptomyces bacteria could activate hundreds of pathways for antibiotic production.

The lead researcher on the paper Dr Christophe Corre, from the University of Warwick's Department of Chemistry said:

"Early results also suggest that this approach could switch on novel antibiotic production pathways in up to 50% of Streptomyces bacteria. With thousands of known members of the Streptomyces family that could mean that AHFCAs could unlock hundreds of new antibiotics to replenish our dwindling arsenal of effective antibiotic drugs."

Note for editors:

The full paper is entitled: "2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining" by Christophe Corre, Lijiang Song, Sean O'Rourke, Keith F. Chater and Gregory L. Challis and will be published in PNAS's oline edition in the week beginning 27th October 2008

####

For more information, please click here

Contacts:
Professor Greg Challis

44-024-765-74024

Dr Christophe Corre
Research Fellow in Chemical Biology
Department of Chemistry
University of Warwick


Peter Dunn
Press and Media Relations Manager
Communications Office
University of Warwick
Coventry CV4 7AL
+44 (0)24 76 523708
or +44 (0)7767 655860

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Nanomedicine

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Discoveries

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Announcements

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project