Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoparticles Target Multiple Cancer Genes, Shrink Tumors More Effectively

Abstract:
Nanoparticles filled with small interfering RNA (siRNA) molecules targeting two genes that trigger melanoma have shown that they can inhibit the development of melanoma, the most dangerous type of skin cancer. The nanoparticles, administered in conjuction with ultrasound irradiation, exerted their effects only on malignant tissue, leaving healthy tissue alone.

Nanoparticles Target Multiple Cancer Genes, Shrink Tumors More Effectively

Bethesda, MD | Posted on October 27th, 2008

"It is a very selective and targeted approach," said Gavin Robertson, Ph.D., who led the team of researchers from the Penn State College of Medicine. "And unlike most other cancer drugs that inadvertently affect a bunch of proteins, we are able to knock out single genes."

The Penn State researchers speculated that siRNA could turn off the two cancer-causing genes and potentially treat the deadly disease more effectively. "siRNA checks the expression of the two genes, which then lowers the abnormal levels of the cancer causing proteins in cells," explained Dr. Robertson. This research appears in the journal Cancer Research.

In recent years, researchers have zeroed in on two key genes—B-Raf and Akt3—that play key roles in the development of melanoma. Mutations in the B-Raf gene, the most frequently mutated gene in melanoma, lead to the production of a mutant form of the B-Raf protein, which then helps mole cells survive and grow. B-Raf mutations alone, however, do not trigger melanoma development. That event requires a second protein, called Akt3, that regulates the activity of the mutated B-Raf, which aids the development of melanoma. The siRNA agents used in this study specifically target Akt3 and the mutant B-Raf and therefore do not affect normal cells.

However, although knocking out specific genes may seem like a straightforward task, delivering the siRNA drug to cancerous cells is another story, because not only do protective layers in the skin keep drugs out but also chemicals in the skin quickly degrade the siRNA. To clear these two hurdles, Dr. Robertson and his team engineered lipid-based nanoparticles that can incorporate siRNA into their hollow interiors. The researchers then used a portable ultrasound device to temporarily create microscopic holes in the surface of the skin, allowing the drug-filled particles to leak into tumor cells beneath.

When the researchers exposed lab-generated skin containing early cancerous lesions to the treatment 10 days after the skin was created, the siRNA reduced the ability of cells containing the mutant B-Raf to multiply by nearly 60 to 70 percent and more than halved the size of lesions after 3 weeks. "This is essentially human skin with human melanoma cells, which provides an accurate picture of how the drug is acting," said Dr. Robertson.

Mice with melanoma that underwent the same treatment had their tumors shrink by nearly 30 percent when only the mutant B-Raf was targeted. There was no difference in the development of melanoma when the Akt3 gene alone was targeted, although existing tumors shrank by about 10 to 15 percent in 2 weeks. However, when the researchers targeted both Akt3 and mutant B-Raf at the same time, they found that tumors in the mice shrank about 60 to 70 percent more than when either gene was targeted alone.

"If you knock down each of these two genes separately, you are able to reduce tumor development somewhat," Dr. Robertson said. "But knocking them down together leads to synergistic reduction of tumor development."

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Nanomedicine

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Discoveries

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Announcements

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE