Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > JHU chemists devise self-assembling “organic wires”

John D. Tovar, assistant professor of chemistry at The Johns Hopkins University.

Credit: Will Kirk/JHU
John D. Tovar, assistant professor of chemistry at The Johns Hopkins University.

Credit: Will Kirk/JHU

Abstract:
From pacemakers constructed of materials that so closely mimic human tissues that a patient's body can't discern the difference to devices that bypass injured spinal cords to restore movement to paralyzed limbs, the possibilities presented by organic electronics read like something from a science fiction novel.

JHU chemists devise self-assembling “organic wires”

Baltimore, MD | Posted on October 23rd, 2008

Derived from carbon-based compounds (hence the term "organic"), these "soft" electronic materials are valued as lightweight, flexible, easily processed alternatives to "hard" electronics components such as metal wires or silicon semiconductors. And just as the semiconductor industry is actively developing smaller and smaller transistors, so, too, are those involved with organic electronics devising ways to shrink the features of their materials, so they can be better utilized in bioelectronic applications such as those above.

To this end, a team of chemists at The Johns Hopkins University has created water-soluble electronic materials that spontaneously assemble themselves into "wires" much narrower than a human hair. An article about their work was published in a recent issue of the Journal of the American Chemical Society.

"What's exciting about our materials is that they are of size and scale that cells can intimately associate with, meaning that they may have built-in potential for biomedical applications," said John D. Tovar, an assistant professor in the Department of Chemistry in the Zanvyl Krieger School of Arts and Sciences. "Can we use these materials to guide electrical current at the nanoscale? Can we use them to regulate cell-to-cell communication as a prelude to re-engineering neural networks or damaged spinal cords? These are the kinds of questions we are looking forward to being able to address and answer in the coming years."

The team used the self-assembly principles that underlie the formation of beta-amyloid plaques, which are the protein deposits often associated with Alzheimer's disease, as a model for their new material. This raises another possibility: that these new electronic materials may eventually prove useful for imaging the formation of these plaques.

"Of course, much research has been done and is still being done to understand how amyloids form and to prevent or reverse their formation," Tovar said. "But the process also represents a powerful new pathway to fabricate nanoscale materials."

This research was supported by The Johns Hopkins University.

####

For more information, please click here

Contacts:
Lisa DeNike

443-287-9960

Copyright © Johns Hopkins University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Chemistry

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Self Assembly

Computers made of genetic material? HZDR researchers conduct electricity using DNA-based nanowires November 9th, 2016

First multicellular organism inspires the design of better cancer drugs September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Discoveries

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project