Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Ion jelly could satisfy appetite for greener batteries

October 18th, 2008

Ion jelly could satisfy appetite for greener batteries

Abstract:
You've likely heard of strawberry jelly, mint jelly and even royal jelly. Now Portuguese chemists have created what they call an ion jelly that could make a range of electrochemical devices, including batteries, fuel cells and solar cells, cheaper and more environmentally friendly.

The jelly is made by dissolving gelatine in an ionic liquid - a solution made up entirely of negatively and positively charged ions.

Ionic liquids conduct electricity and are generally very stable, non-flammable and non-volatile. That makes them attractive as environmentally friendly replacements for materials normally used as the electrolytes that separate the positive and negative electrodes in electrochemical devices, such as batteries.

But such electrolytes must usually be solid. And turning ionic liquids into solid form, by combining them with polymers or nanotubes, is challenging and expensive.

Source:
newscientist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec, Holst Centre and Renesas Present World’s Lowest Power 2.4GHz Radio Chip for Bluetooth Low Energy March 1st, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Discoveries

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Announcements

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE