Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SRNL's microbes useful for for environmental cleanup and oil recovery

Abstract:
A unique, patent-pending collection of microbes that can be used both for cleaning up the environment and addressing our energy needs has earned the U.S. Department of Energy's Savannah River National Laboratory kudos from a newsletter covering the rapidly expanding field of nanotechnology.

SRNL's microbes useful for for environmental cleanup and oil recovery

Aiken, SC | Posted on October 16th, 2008

Nanotech Briefs awarded SRNL's BioTiger™ a spot on its fourth annual Nano 50™ list, described as the top 50 technologies, innovators and products expected to revolutionize the industry. Nanotech Briefs will present the awards during the National Nano Engineering Conference, Nov. 12-13 in Boston. For more information, visit www.techbriefs.com/nano.

BioTiger™ resulted from over eight years of extensive work that began at a century-old Polish waste lagoon. "DOE had originally funded us to work with our Polish counterparts to develop a microbe-based method for cleaning up oil-contaminated soils," explains Dr. Robin Brigmon, SRNL Fellow Engineer. From that lagoon, they identified microbes that could break down the oil to carbon dioxide and other non-hazardous products. "The project was a great success," Dr. Brigmon says. "The lagoon now has been cleaned up, and deer now can be seen grazing on it."

Recent efforts have shown that BioTiger™ naturally produces chemicals that may have other industrial uses as well. For example, BioTiger™ can be applied directly for cleaning up oil residues on surfaces such as concrete slabs and building foundations.

In addition to its original environmental cleanup uses, BioTiger™ has recently been shown to be highly effective for increasing oil recovery from oil sands without added chemicals. Oil sands (also referred to as tar sands) are a combination of clay, sand, water, and bitumen, a heavy black viscous material. Currently, oil sands represent about 40 percent of Canada's oil production. Approximately 20 percent of U.S. crude oil and refined products come from Canada, and a substantial portion of this amount comes from tar sands.

Oil sands are mined and processed to generate oil similar to that pumped from conventional oil wells, but extracting oil from these sands is more complex and requires more energy than standard oil recovery. Current methods require multiple steps including heating, mechanical mixing, and chemical additions to extract hydrocarbons from the oil sands.

There have been concerns about the environmental impact of these operations, including concerns about the amount of water used in the process, energy cost to operate the systems, runoff from the tailings ponds, wastewater from the facilities, and chemical residues in the water left over from the extraction process. Past efforts have generated large tailings ponds that still contain varying amounts of bitumen indicating that the process did not efficiently extract all of the available oil.

An enhanced oil recovery process using BioTiger™ could provide a means to maximize capacity and minimize environmental impact, while remaining cost effective. The BioTiger™ microbes attach themselves to the oil sands, separating the oil from the sand particles. The microbes make the separation step easier, resulting in more removed oil and, potentially, reduced energy costs.

In a test using oil sands from Ft. McMurray, Canada, BioTiger™ demonstrated a 50 percent improvement in separation over 4 hours, and a five-fold increase at 25 hours.

It may also have potential for other oil recovery initiatives, including oil shale and other underground areas with oil deposits.

####

About DOE/Savannah River National Laboratory
SRNL is DOE's applied research and development laboratory at the Savannah River Site (SRS). SRNL puts science to work to support DOE and the nation in the areas of national and homeland security, energy security and environmental management. The management and operating contractor for SRS and SRNL is Savannah River Nuclear Solutions, LLC.

For more information, please click here

Contacts:
Angie French

803-725-2854

Copyright © DOE/Savannah River National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Discoveries

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Announcements

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Environment

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project