Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Blowing bubbles on a nanoscale

A 3-D visualization of nanobubbles present on a hydrophobic surface. The bubbles have a diameter of only 50-200 nanometres and a thickness of 5-20 nanometres.
A 3-D visualization of nanobubbles present on a hydrophobic surface. The bubbles have a diameter of only 50-200 nanometres and a thickness of 5-20 nanometres.

Abstract:
Scientists are puzzled by the nanobubbles that can develop on surfaces under water. It should be impossible for them to exist but nevertheless they remain intact for hours. They are something of a mystery, yet it is possible to manipulate the development of these bubbles, according to PhD candidate Shangjiong Yang at the University of Twente. The bubbles can then, for example, be used to reduce flow resistance in liquids. Yang received his doctorate from the Faculty of Applied Sciences on 9 October.

Blowing bubbles on a nanoscale

Netherlands | Posted on October 15th, 2008

If a water-repellent material is submerged in water, nanobubbles can develop on its surface: extremely small air bubbles with a diameter of 50-200 nanometres and a thickness of 5-20 nanometres. These bubbles are so small they cannot even be seen with a normal microscope and that is why they were not discovered until a few years ago.

According to existing theories, these bubbles should really not exist at all, as the pressure inside them is so great that the gas they contain should be pressed out within a fraction of a second. It is still not understood why these bubbles can remain intact for hours. Once it is possible to manipulate the formation and properties of these bubbles, a whole range of applications becomes possible. For example, the frictional resistance of flowing liquids is reduced by the bubbles, thus enabling them to be used as a lubricant in extremely narrow channels. This is of practical use in the development of the so-called ‘labs-on-a-chip': a whole laboratory set-up, reduced to the size of a chip. Before these bubbles can be employed in this way, however, we have to understand them better and be able to determine exactly where they should develop.

Production of nanobubbles

Yang demonstrated that electrolysis is a reliable method for controlling the production of nanobubbles. He discovered a way of influencing the formation and size of the bubbles by applying a voltage. He also researched several fundamental properties of the bubbles. After all, before you can use them you have to understand them. That is why he investigated the influence of temperature, gas concentration, the roughness of the surface and the surface treatment method on bubble formation. Yang made use of the Atomic Force Microscope (AFM) when carrying out his investigation. It is a microscope with a minuscule needle that moves over the surface (just like the needle of a record player) and monitors differences in height. This needle was used not only to investigate the outlines of the bubbles but also to manipulate them.

Information for the press

Shangjiong Yang (1980, Chongqing, China) carried out his PhD research with the specialist groups Physics of Fluids and Solid State Physics in the Faculty of Applied Sciences at the University of Twente. Professor Detlef Lohse and Professor Harold J.W. Zandvliet supervised his research.

This research forms part of the research programme run by the Foundation for Fundamental Research in Matter (FOM), and financed by the Netherlands Organisation for Scientific Research (NWO). The whole thesis (or just the abstract) is available in digital form.

####

For more information, please click here

Contacts:
Joost Bruysters
tel 0031 53 4892773

or
Wiebe van der Veen
tel 0031 53 4894244

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project