Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Copper catalyst recycles carbon dioxide: Versatile reaction could help greenhouse gas become a more useful synthetic chemical

Figure 1: Carbon dioxide is a greenhouse gas which accelerates global warmingbut it could also become a versatile synthetic chemical.
Figure 1: Carbon dioxide is a greenhouse gas which accelerates global warmingbut it could also become a versatile synthetic chemical.

Abstract:
RIKEN chemists have developed a catalyst that should allow carbon dioxide to be used as a versatile synthetic chemical.

Copper catalyst recycles carbon dioxide: Versatile reaction could help greenhouse gas become a more useful synthetic chemical

Japan | Posted on October 10th, 2008

Carbon dioxide (CO2) is produced whenever fossil fuels are burned (Fig. 1), and it is a powerful greenhouse gas that traps heat in our atmosphere, contributing to global warming. As such, turning the gas into a chemical feedstock, rather than allowing it to escape into the atmosphere, is an extremely appealing idea.

In fact, industry has long used carbon dioxide as a chemical building blockin the manufacture of the painkiller aspirin, for examplebut its use is limited by the difficulty of breaking open its strong carbon-oxygen double bonds.

Carbon compounds activated by lithium or magnesium are often needed to attack and incorporate carbon dioxide successfully, but these reagents are extremely reactive and quite hazardous on a large scale.

Chemists have recently developed milder, boron-based alternatives, which require a rhodium catalyst to speed up the reaction. Unfortunately, this catalyst tends to break down particularly sensitive chemical groups in the product.

Zhaomin Hou, of RIKEN's Advanced Science Institute, Wako, along with colleagues Takeshi Ohishi and Masayoshi Nishiura, has now developed a copper catalyst that helps the boron compounds to react with carbon dioxide without destroying sensitive chemical groups.

This makes the reaction particularly useful for building complex molecules containing several different types of chemical group, something that would not be possible with the harsh lithium reagents. "We have tried many different metal compounds, among which the copper catalyst was the best," says Hou.

The team was also able to study exactly how the catalyst works, by isolating key molecules at various intermediate stages of the reaction. They found that the active copper catalyst first displaces the boron group from the starting molecule, forming a new copper-carbon bond. Carbon dioxide then inserts itself into this bond before the copper catalyst is finally removed, leaving behind a carboxylic acid (-CO2H) group1.

Various forms of the boron compounds, known as boronic esters, are commercially available, says Hou. "And they can also be easily prepared in the lab."

Hou adds that their method is also amenable to large-scale, commercial synthesis. "Since CO2 is a renewable carbon resource, exploration of new reactions and catalysts for its efficient use is of great importance," he says. "One of our goals is to find a catalyst that can transform CO2 in exhaust gasses of automobile vehicles or chemical plants into useful materials."
Reference

1. Ohishi, T., Nishiura, M. & Hou, Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. Angewandte Chemie International Edition 47, 5792-5795 (2008).

The corresponding author for this highlight is based at the RIKEN Organometallic Chemistry Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

download abstract

Related News Press

News and information

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Chemistry

Chains of nanogold forged with atomic precision September 23rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Researchers build world's largest database of crystal surfaces and shapes September 14th, 2016

On-surface chemistry leads to novel products: On-surface chemical Reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. September 13th, 2016

Announcements

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Environment

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic