Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Copper catalyst recycles carbon dioxide: Versatile reaction could help greenhouse gas become a more useful synthetic chemical

Figure 1: Carbon dioxide is a greenhouse gas which accelerates global warming—but it could also become a versatile synthetic chemical.
Figure 1: Carbon dioxide is a greenhouse gas which accelerates global warming—but it could also become a versatile synthetic chemical.

Abstract:
RIKEN chemists have developed a catalyst that should allow carbon dioxide to be used as a versatile synthetic chemical.

Copper catalyst recycles carbon dioxide: Versatile reaction could help greenhouse gas become a more useful synthetic chemical

Japan | Posted on October 10th, 2008

Carbon dioxide (CO2) is produced whenever fossil fuels are burned (Fig. 1), and it is a powerful greenhouse gas that traps heat in our atmosphere, contributing to global warming. As such, turning the gas into a chemical feedstock, rather than allowing it to escape into the atmosphere, is an extremely appealing idea.

In fact, industry has long used carbon dioxide as a chemical building block—in the manufacture of the painkiller aspirin, for example—but its use is limited by the difficulty of breaking open its strong carbon-oxygen double bonds.

Carbon compounds activated by lithium or magnesium are often needed to attack and incorporate carbon dioxide successfully, but these reagents are extremely reactive and quite hazardous on a large scale.

Chemists have recently developed milder, boron-based alternatives, which require a rhodium catalyst to speed up the reaction. Unfortunately, this catalyst tends to break down particularly sensitive chemical groups in the product.

Zhaomin Hou, of RIKEN's Advanced Science Institute, Wako, along with colleagues Takeshi Ohishi and Masayoshi Nishiura, has now developed a copper catalyst that helps the boron compounds to react with carbon dioxide without destroying sensitive chemical groups.

This makes the reaction particularly useful for building complex molecules containing several different types of chemical group, something that would not be possible with the harsh lithium reagents. "We have tried many different metal compounds, among which the copper catalyst was the best," says Hou.

The team was also able to study exactly how the catalyst works, by isolating key molecules at various intermediate stages of the reaction. They found that the active copper catalyst first displaces the boron group from the starting molecule, forming a new copper-carbon bond. Carbon dioxide then inserts itself into this bond before the copper catalyst is finally removed, leaving behind a carboxylic acid (-CO2H) group1.

Various forms of the boron compounds, known as boronic esters, are commercially available, says Hou. "And they can also be easily prepared in the lab."

Hou adds that their method is also amenable to large-scale, commercial synthesis. "Since CO2 is a renewable carbon resource, exploration of new reactions and catalysts for its efficient use is of great importance," he says. "One of our goals is to find a catalyst that can transform CO2 in exhaust gasses of automobile vehicles or chemical plants into useful materials."
Reference

1. Ohishi, T., Nishiura, M. & Hou, Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. Angewandte Chemie International Edition 47, 5792-5795 (2008).

The corresponding author for this highlight is based at the RIKEN Organometallic Chemistry Laboratory

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

download abstract

Related News Press

News and information

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Chemistry

In-cell molecular sieve from protein crystal February 14th, 2017

Nano-level lubricant tuning improves material for electronic devices and surface coatings February 11th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

UCLA physicists map the atomic structure of an alloy: Researchers measured the coordinates of more than 23,000 atoms in a technologically important material February 3rd, 2017

Announcements

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Environment

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project