Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Peugeot Magnet Uses Magnetic Energy

October 2nd, 2008

Peugeot Magnet Uses Magnetic Energy

Abstract:
"Peugeot Magnet", designed by Tolga Metin from the United States, is one of the 29 finalists at the 5th Peugeot Design Contest. This year's competition theme is "imagine the Peugeot in the worldwide megalopolis of tomorrow". Metin's Peugeot Magnet concept is based on magnetic energy as it is inspired by magnetic (maglev) trains. The concept offers an environmentally friendly car with a sustainable design.

Peugeot Magnet's outer wheels, formed of two eccentric cylindrical parts, do not touch the inner hubs of the wheels, and are made of synthetic foam.Both the inner hubs and the inner part of the outer cylinder, contain same pole magnetic tubes which derives their electromagnetic force from the electrical engine.

Thanks to the same polarity magnetic field, when driving, the inner hubs elevate, ultimately causing the car to float several centimeters above the ground. The inner hubs also act as suspensions if the car passes any bumps in the road. Moving forward or backward is made possible thanks to the rotational magnetic energy caused by the inner hub and outer wheel's magnetic tubes.

The steering wheel controls the magnetic field in the wheels, so that if the driver wishes to turn right, the rotational manner of electromagnetic force in the right wheel decreases, thus causing the vehicle to turn. When braking, a magnetic field which is reversed to the moving direction's field is applied to the wheels, so that the car stops in a short distance.

Peugeot Magnet's canopy provides the driver with a viewing angle of 360 degrees. Made of high strength nanomaterials, it is also able to change color, thus protecting the driver against the sun's radiation.

Source:
thefutureofthings.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Possible Futures

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Materials/Metamaterials

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Automotive/Transportation

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Going green with nanotechnology December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project