Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UNC study on properties of carbon nanotubes, water could have wide-ranging implications

Abstract:
A fresh discovery about the way water behaves inside carbon nanotubes could have implications in fields ranging from the function of ultra-tiny high-tech devices to scientists' understanding of biological processes, according to researchers from the University of North Carolina at Chapel Hill.

UNC study on properties of carbon nanotubes, water could have wide-ranging implications

Chapel Hill, NC | Posted on October 2nd, 2008

The findings, published in the Oct. 3, 2008, issue of the journal Science, relate to a property of so-called "nano-confined" water - specifically, whether hollow carbon nanotubes take in the liquid easily or reluctantly, depending on their temperature.

As well as shedding light on the characteristics of human-made nanomaterials, researchers note that such properties are relevant to the workings of biological structures and phenomena which also function at nano-scales.

The team of scientists, led by Yue Wu, Ph.D., professor of physics in the UNC College of Arts and Sciences, examined carbon nanotubes measuring just 1.4 nanometers in diameter (one nanometer is a billionth of a meter). The seamless cylinders were made from rolled up graphene sheets, the exfoliated layer of graphite.

"Normally, graphene is hydrophobic, or 'water hating' - it repels water in the same way that drops of dew will roll off a lotus leaf," said Wu. "But we found that in the extremely limited space inside these tubes, the structure of water changes, and that it's possible to change the relationship between the graphene and the liquid to hydrophilic or 'water-liking'."

The UNC team did this by making the tubes colder. Using nuclear magnetic resonance - similar to the technology used in advanced medical MRI scanners - they found that at about room temperature (22 degrees centigrade), the interiors of carbon nanotubes take in water only reluctantly.

However, when the tubes were cooled to 8 degrees, water easily went inside. Wu said this shows that it is possible for water in nano-confined regions - either human-made or natural - to take on different structures and properties depending on the size of the confined region and the temperature.

In terms of potential practical applications, Wu suggested further research along these lines could impact the design of high-tech devices (for example, nano-fluidic chips that act as microscopic laboratories), microporous sorbent materials such as activated carbon used in water filters, gas masks, and permeable membranes.

"It may be that by exploiting this hydrophobic-hydrophilic transition, it might be possible to use changes in temperature as a kind of 'on-off' switch, changing the stickiness of water through nano-channels, and controlling fluid flow."

Wu also noted that this research relates to scientists' understanding of the workings of many building blocks of life (such as proteins, whose structures also have nano-confined hydrophobic regions) and how their interaction with water plays a role in how they function. For example, such interactions play an important role in the process known as "protein folding," which determines a protein's eventual shape and characteristics. Misfolded proteins are believed to be a cause of several neurodegenerative and other diseases.

"We don't fully understand the mechanisms behind protein unfolding upon cooling," Wu said. "Could this kind of cooling-induced hydrophobic-hydrophilic transition play a role? We don't know but it's worth investigating."

Along with Wu, the other study authors were graduate student Hai-Jing Wang, postdoctoral research associate Xue-Kui Xi, Ph.D., and research professor Alfred Kleinhammes, Ph.D., all from UNC.

####

For more information, please click here

Contacts:
Patric Lane

919-962-8596

Yue Wu, Ph.D.
(919) 962-0307

Copyright © University of North Carolina at Chapel Hill

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec, Holst Centre and Renesas Present World’s Lowest Power 2.4GHz Radio Chip for Bluetooth Low Energy March 1st, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Discoveries

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Announcements

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Water

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Nanocomposite Membranes Used in Iran for Water Desalination, Sweetening February 16th, 2015

Ligar secures investment from Wallace Corporation to commercialise polymers that pick out good and bad molecules: Ground-breaking science innovation removes molecules in the wrong place from liquids February 15th, 2015

Scientists in Iran Use Nanotechnology for Industrial Purification of Drinking Water February 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE