Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IBM Scientists Unlock the Secret of the Kondo Effect

Abstract:
Scientists at the IBM (NYSE: IBM) Almaden Research Center in San Jose, CA have forged a breakthrough in understanding an intriguing phenomenon in fundamental physics: the Kondo effect. They report their findings today in the scientific journal Nature Physics.

IBM Scientists Unlock the Secret of the Kondo Effect

San Jose, CA | Posted on September 21st, 2008

The Kondo effect, one of the few examples in physics where many particles collectively behave as one object (a single quantum-mechanical body), has intrigued scientists around the world for decades. Now, using a technique that was developed by the same team in 2007, the IBM researchers have shown, for the first time anywhere, that it is possible to predict when the Kondo effect will occur -- and to understand why.

The key turns out to be in the geometry of a magnetic atom's immediate surroundings. By carefully studying how this geometry influences the magnetic moment (or "spin") of the atom, the emergence of the Kondo effect can now be predicted and understood. This result represents a major advancement in fundamental physics.

The achievement is one of the latest in IBM's more than two decades of nanotechnology leadership and exploration of the world of magnetism at the atomic scale. Starting with the invention of the Scanning Tunneling Microscope (STM) in 1981, IBM has been at the forefront of research aimed at expanding our abilities to investigate and manipulate individual atoms.

A look at the Kondo Effect

When a single magnetic atom is located inside a metal, the free electrons of the metal 'screen' the atom. That way, a cloud of many electrons around the atom becomes magnetized. Sometimes, if the metal is cooled down to very low temperatures, the atomic spin enters a so-called 'quantum superposition' state. In this state its north-pole points in two opposite directions at the same time. As a result, the entire electron cloud around the spin will also be simultaneously magnetized in two directions.

####

For more information, please click here

Contacts:
Jenny Hunter
IBM

510-919-5320

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Physics

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Discoveries

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project