Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IBM Scientists Unlock the Secret of the Kondo Effect

Abstract:
Scientists at the IBM (NYSE: IBM) Almaden Research Center in San Jose, CA have forged a breakthrough in understanding an intriguing phenomenon in fundamental physics: the Kondo effect. They report their findings today in the scientific journal Nature Physics.

IBM Scientists Unlock the Secret of the Kondo Effect

San Jose, CA | Posted on September 21st, 2008

The Kondo effect, one of the few examples in physics where many particles collectively behave as one object (a single quantum-mechanical body), has intrigued scientists around the world for decades. Now, using a technique that was developed by the same team in 2007, the IBM researchers have shown, for the first time anywhere, that it is possible to predict when the Kondo effect will occur -- and to understand why.

The key turns out to be in the geometry of a magnetic atom's immediate surroundings. By carefully studying how this geometry influences the magnetic moment (or "spin") of the atom, the emergence of the Kondo effect can now be predicted and understood. This result represents a major advancement in fundamental physics.

The achievement is one of the latest in IBM's more than two decades of nanotechnology leadership and exploration of the world of magnetism at the atomic scale. Starting with the invention of the Scanning Tunneling Microscope (STM) in 1981, IBM has been at the forefront of research aimed at expanding our abilities to investigate and manipulate individual atoms.

A look at the Kondo Effect

When a single magnetic atom is located inside a metal, the free electrons of the metal 'screen' the atom. That way, a cloud of many electrons around the atom becomes magnetized. Sometimes, if the metal is cooled down to very low temperatures, the atomic spin enters a so-called 'quantum superposition' state. In this state its north-pole points in two opposite directions at the same time. As a result, the entire electron cloud around the spin will also be simultaneously magnetized in two directions.

####

For more information, please click here

Contacts:
Jenny Hunter
IBM

510-919-5320

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Quantum nanoscience

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic