Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Colloids twist like DNA

September 17th, 2008

Colloids twist like DNA

Abstract:
French scientists have used magnetic colloids to make self-assembling, helical structures reminiscent of DNA. Similar methods could be used to make tiny, self-propelling objects and colloidal models that mimic the assembly of complex, naturally occurring molecules.

The helices are formed from chains of dumbbell-shaped silica spheres, which are larger at one end than at the other and encircled by a magnetic 'waist' of iron oxide. In a magnetic field, the waists are attracted to each other, but as a new dumbbell approaches the growing chain it rotates to align its waist with the field. Because the dumbbells are asymmetric, the chain begins to twist into a helix.

Jerome Bibette, who led the team at the Industrial Physics and Chemistry Higher Educational Institution in Paris, says the effect resembles the way that subunits of a polymer approach each other in order to avoid steric hindrance. 'You cannot escape from the direction of polymerisation. It's imposed by nature. That's the game of chemistry and we have recreated this game with just silica spheres and magnetic waists.'

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Self Assembly

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project