Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Colloids twist like DNA

September 17th, 2008

Colloids twist like DNA

Abstract:
French scientists have used magnetic colloids to make self-assembling, helical structures reminiscent of DNA. Similar methods could be used to make tiny, self-propelling objects and colloidal models that mimic the assembly of complex, naturally occurring molecules.

The helices are formed from chains of dumbbell-shaped silica spheres, which are larger at one end than at the other and encircled by a magnetic 'waist' of iron oxide. In a magnetic field, the waists are attracted to each other, but as a new dumbbell approaches the growing chain it rotates to align its waist with the field. Because the dumbbells are asymmetric, the chain begins to twist into a helix.

Jerome Bibette, who led the team at the Industrial Physics and Chemistry Higher Educational Institution in Paris, says the effect resembles the way that subunits of a polymer approach each other in order to avoid steric hindrance. 'You cannot escape from the direction of polymerisation. It's imposed by nature. That's the game of chemistry and we have recreated this game with just silica spheres and magnetic waists.'

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Discoveries

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project