Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Calculation of graphene's ideal strength confirmed by tests

September 15th, 2008

Calculation of graphene's ideal strength confirmed by tests

Abstract:
In 2007, Prof. MING Pingbing from the CAS Academy of Mathematics and Systems Science and his colleagues made a calculation on the ideal strength of grapheme, a promising carbon material. One year later, their work is verified by an experiment that was reported recently in Science.

Story:
Grapheme, discovered in 2004 by a research team from Manchester University in UK, is a relatively large-scale one-atom thick layer of graphite with remarkable electric characteristics. Experts believe that the nano-transistor made from such a material might greatly raise the operating speed of computers.

The ideal strength refers to the highest achievable strength of a defect-free crystal at 0K. It is a crucial theoretical parameter because it plays a critical role in characterizing the nature of chemical bonding of the crystal. The study of ideal strength can tell us a lot about why some materials are intrinsically brittle, while others are intrinsically ductile.

Via the method of first-principle calculation and teaming up with LIU Fang from the Central University of Finance and Economics in Beijing and LI Ju from the Ohio State University, Ming carried out a careful ab initio study of the ideal tensile strength of flat graphene, as structural motif for carbon nanotubes, nanofibers and other graphene-based materials. The results show that that the value of the monolayer graphene's intrinsic strength is between 110-121GPa, indicating that graphene is the strongest material ever discovered so far.

The results are confirmed by the observation of a research group with the Columbia University in US in the first ever successful experiment to measure the ideal strength of graphene in laboratory. Published by the 18 July issue of Science, the work showed the value was 130±10GPa. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

Experts say that this show that scientific computation can play a critical role in scientific exploration, including the development of new materials.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Discoveries

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Materials/Metamaterials

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE